Sound Judgment:

Choosing effective speech therapy techniques and using motor learning principles for speech sound disorders, with or without related structural anomalies

Ann W. Kummer, PhD, CCC-SLP, ASHA Fellow

Financial Disclosures

Royalties:

 Kummer, AW. (2014). Cleft Palate and Craniofacial Anomalies: The Effects on Speech and Resonance, 3rd edition from Cengage Learning.

Non Financial Disclosures

None

SOUND JUDGMENT: INTRODUCTION

Objectives

As a result of this course, participants will be able to:

- Use auditory, visual and tactile-kinesthetic cues to enhance the child's awareness of the misarticulated sound versus the correct sound production.
- Apply effective speech therapy techniques for typical speech sound errors.
- Use motor learning and motor memory principles to achieve carryover soon after acquisition of the appropriate placement.

Course Outline

- Anatomical requirements for normal speech
- Effects of abnormal structure on speech sound production
- Enhancing speech sound awareness
- Speech therapy "cookbook"
- Achieving carry-over using motor learning principles
- Summary

ANATOMICAL REQUIREMENTS FOR NORMAL SPEECH SOUND PRODUCTION

Most speech sounds are produced in the front of the mouth:

- Bilabial sounds- p, b, m, w
- Labiodental sounds- f, v
- Lingual-alveolar sounds- t, d, n, l, s, z
- Palatal sounds-∫, ʒ, ʧ, dʒ

 The only speech sounds produced in the back of the mouth are velar sounds (k, g, ŋ)

- The lips should:
 - Approximate at rest without effort
- Bilabial competence is important for production of bilabial and labiodental sounds

- The tongue tip should:
 - Rest under the alveolar ridge
 - Be able to move up and down, back and forth without interference

 Tongue tip movement is important for production of lingual-alveolar and palatal sounds.

- In an evaluation of speech sound production, the following should always be assessed:
 - Bilabial competence
 - Tongue tip to alveolar ridge relationship

- What about the teeth?
- What if you don't have any?

- Sibilants or the "teeth sounds" (s, z, ∫, ʒ, ʧ, ʤ) are not actually produced by the teeth
- Teeth are NOT necessary for normal speech production
- Teeth are not necessary for speech, but can actually *interfere* with normal speech production

Science Experiment

- Produce an /s/ sound
- Note the airstream flowing between the tongue tip and alveolar ridge
- Open the jaws and produce an /s/ sound
- Why do we close our teeth to produce /s/?
- Answer: To raise the mandible so the tongue is positioned just under the alveolar ridge

- Sibilants are actually produced by forcing airstream between the tip of the tongue and the alveolar ridge
- Labiodental and interdental sounds can be produced with the lip/tongue and gum ridge

Video 1: Edentulous Speech

EFFECTS OF ABNORMAL STRUCTURE ON SPEECH SOUND PRODUCTION

Structural Abnormalities

Can causing either:

- Obligatory distortions
 OR
- Compensatory errors

Obligatory Distortions

- Articulation placement is NORMAL, but the structural abnormality affects sound production
- Corrected by changing structure only
- Cannot be corrected with therapy

Compensatory Errors

- Articulation placement is altered due to structural abnormality
- Corrected by changing structure first... and then by changing function (articulation placement) through speech therapy

Structural Abnormalities that Affect (or Do Not Affect) Speech

- Dental malocclusion
- Ankyloglossia- actually not a cause
- Velopharyngeal insufficiency/incompetence (VPI)

Dental Malocclusion

Dental Malocclusion

- The tongue rests in the mandible
- Wherever the mandible goes, so goes the tongue
- Biggest concern about malocclusion: It affects the position of the tongue tip relative to that alveolar ridge!

Class II Malocclusion

 If the mandible is in a posterior position relative to the maxilla (Class II malocclusion)— the tongue will be posterior to the alveolar ridge

Class II Malocclusion

- Bilabial competence is compromised
- Tongue tip is under the palate instead of the alveolar ridge

Video 2: Class II Malocclusion

Class III Malocclusion

 If the mandible is in an anterior position relative to the maxilla (Class III malocclusion)— the tongue will be anterior to the alveolar ridge

Class III Malocclusion

- Bottom lip cannot articulate against the top lip or maxillary teeth
- Tongue tip is anterior to the alveolar ridge and maxillary teeth

Video 3: Class III Malocclusion

Video 4: Class III Malocclusion

Anterior Crossbite

- An anterior crossbite is when the maxillary incisors are inside the mandibular incisors
- Can occur with or without a Class III skeletal malocclusion

Video 5: Anterior Crossbite

Video 6: Anterior Crossbite

Ankyloglossia and Speech

Ankyloglossia ("Tongue Tie")

 Ankyloglossia is a congenital condition where the lingual frenulum is either abnormally short or has an anterior attachment near the tongue tip

Ankyloglossia: Functional Characteristics

 Patient cannot touch roof of mouth with tongue tip when the mouth is open

Ankyloglossia: Functional Characteristics

 Patient cannot protrude tongue past the mandibular incisors (or the lower gingiva)

Ankyloglossia and Speech

Common sense approach:

- The sound that requires the most elevation is /l/
- The sounds that requires the most protrusion are /Θ/ and /ð/
- These sounds can be produced with significant tongue tip restriction

Francis D.O., et al. (2015). Treatments for Ankyloglossia and Ankyloglossia With Concomitant Lip-Tie. Comparative Effectiveness Review No. 149. AHRQ, Publication No. 15-EHC011-EF. Rockville, MD: Agency for Healthcare Research and Quality.

Kummer, A. W. (2005, Dec. 27). To clip or not to clip? That's the question. The ASHA Leader, 10(17), 6–7, 30.

Video 7: Ankyloglossia

Ankyloglossia and Speech

Common sense approach:

- Ankyloglossia is unlikely to affect the production of English sounds
- Ankyloglossia may affect the lingual trill sounds (i.e., the Spanish /r/)

Velopharyngeal Insufficiency (VPI) and Velopharyngeal Incompetence (VPI)

Velopharyngeal Insufficiency

Velopharyngeal Incompetence

Effects of VPI on Resonance

- VPI causes hypernasality, which is a resonance disorder
- Hypernasality affects the quality of vowels and voiced consonants
- It does not affect articulation and therefore, hypernasality cannot be corrected with speech therapy

Effects of VPI on Speech

- VPI causes nasal emission on pressure sounds, which can affect production of plosives, fricatives, and affricates
- Due to the lack of oral airflow, the child may develop compensatory articulation substitutions

Compensatory Errors Due to VPI

- Most common compensatory articulation productions for VPI are:
 - Glottal stops substituted for plosives
 - Pharyngeal fricatives substituted for fricatives/affricates

Glottal Stop

- Produced by closing the vocal cords and then opening suddenly
- Can be co-articulated with oral placement
- Often used as place markers for "omissions"

Pharyngeal Fricative

- Air is forced through a narrow opening between the tongue base and/or velum and the pharyngeal wall
- Will result in phoneme-specific nasal emission (PSNE)
- May seem like there is VPI, but it is an articulation disorder instead

Speech Therapy and VPI

- Speech therapy IS appropriate for correction of compensatory articulation errors, preferably AFTER correction of the structure
- Pharyngeal fricative will cause nasal emission, even after VPI surgery
- Work on correction placement... NOT on airflow

Speech Therapy and VPI

- Speech therapy is NEVER appropriate for obligatory distortions (which occur with normal placement), including:
 - Distortion due to interference of the teeth
 - Hypernasality and/or nasal emission due to VPI but normal placement

ENHANCING SPEECH SOUND AWARENESS

Enhancing Awareness

- Use sensory cues to contrast the difference between the error sound and the correct sound
 - Visual cues
 - Tactile-kinesthetic cues
 - Auditory cues

Enhancing Awareness: Glottal Stops Example

Enhancing Awareness: Glottal Stops

Visual cues:

- Have the child watch your neck during correct and incorrect production
- Have the child watch his own neck in a mirror when:
 - producing syllables in which he does not use a glottal stop (i.e., ma)
 - producing syllables in which he does use a glottal stop (i.e., ba)

Enhancing Awareness: Glottal Stops

Tactile-kinesthetic cues:

- Have the child feel your neck during correct and incorrect production
- Have the child feel his own neck in a mirror when:
 - producing syllables in which he does not use a glottal stop (i.e., ma)
 - producing syllables in which he does not use a glottal stop (i.e., ba)

Enhancing Awareness: Glottal Stops

Auditory cues:

- Have the child listen to your productions of the correct and incorrect productions.
- Reverse roles: Have the child be the "teacher" and you be the "kid"

Auditory Awareness: Oral & Nasal Listener*

* Super Duper Publications- 2007

Auditory Awareness: Oral & Nasal Listener*

SPEECH THERAPY "COOKBOOK"

Therapy for Placement Errors

- Glottal stop
- /١/
- /k/ and /g/)
- /ə/ and /r/

- Affricates: /ʧ/ and /ʤ/
- Lateral lisp
- Pharyngeal fricative
- Blends

Kummer, A. W. (2011). Speech therapy for errors secondary to cleft palate and velopharyngeal dysfunction. *Seminars in Speech and Language, 32*(2), pp.191–199.

Kummer, A. W. (2014). Speech therapy. In A.W. Kummer, *Cleft Palate and Craniofacial Anomalies: The Effects on Speech and Resonance*, Clifton Park, NY: Cengage Learning.

Therapy for Glottal Stop

- Produce an isolated voiceless plosive (i.e., /p/)
- Produce the voiceless plosive and then the vowel, preceded by an /h/ (i.e., /p... ha/
- Produce the voiced plosive cognate (i.e., /b/) with a "whisper" and slowly transition to the /h/ and then the vowel (i.e., /b...ha/
- Do the same for the other voiceless/voiced plosives

- w/l is easy
- Place hands on the face an tell the child not to move the face during production to eliminate the lip movement

- ŋ/l is hard
- The child can co-articulate the alveolar (tongue tip) and velar placements, so it looks like placement is correct when it's not

- Begin with a big yawn to raise the velum up and bring the back of the tongue down
- Make the child aware of the open stretch in the back of the mouth
- Co-articulate the /l/with a big yawn
- Gradually decrease the size of the yawn

- For feedback, use a listening tube or the ONL with the tube in the nose
- If sound is heard through the tube, the /ŋ/ (nasal sound) is still there

Video 8: Yawn Technique for /l/

Therapy for /k/ and /g/

- Have the child produce and hold /ŋ/ to feel placement
- Work on the up and down movement by achieving position and then dropping the tongue

Therapy for /k/ and /g/

If the child can't produce an /ŋ/...

 Put a tongue blade on the middle of the tongue and push down and back

OR

 Firmly press your thumb under the base of the child's chin to push the back of the tongue up

Therapy for /k/ and /g/

- Have child take a breath, place his tongue in an /ŋ/ position, and drop the tongue to produce a /g/
- If necessary, pinch his nose closed and then have him drop the tongue
 - This will turn it into a /g/ with normal oral airflow
- Have the child whisper the /g/ sound to achieve the /k/

Video 9: Therapy for /k/ and /g/

Therapy for /ə/ and /r/

Science Experiment

- Prolong an /ə/ and feel where how the back of your tongue articulates under your molars
- While prolonging an / 가/, move your tongue tip up and down

Science Experiment

- **Conclusion:** /ə/ is produced in the **back** of the mouth; the tongue tip placement doesn't matter
- Posterior sides of the tongue articulate under maxillary molars

Therapy for /ə/ and /r/

- / ə/ is a continuant
- /r/ is a movement sound that begins with /a/
- Slowly produce the syllable /ra/
- Therefore, always start with / >/

Video 10: Therapy for /ə/

 With a tongue blade, stimulate both sides of the back of the tongue and then the upper gum ridge under the molars

- Show the child how the tongue forms the shape of a "boat"
- Ask the child to make a wide smile while "backing up the boat"

- To help elevate the back of the tongue, push up against the base of the chin with your finger
- Make sure it feels loose so you can push

- Assist placement by squeezing the cheeks with your thumb and forefinger to get lip rounding
- Use your middle finger to push up the back of the tongue

Video 11: Therapy for /ə-/

Video 12: Therapy for /ə-/

- Once final /ə/ is achieved, work on initial /r/ by showing the forward movement of the tongue with your hand
- If the child goes to a /w/, have him hold his hands on his face and tell him not to allow the face to move while going from /ə/ to /r/

Therapy for Affricates: /ʧ/ and /ʤ/

- Reminder: Affricates are a combination of a plosive and a fricative:
 - ʧ = t + ∫
 - dʒ = d + ʒ

Therapy for Affricates: /ʧ/ and /ʤ/

- Make sure the child can produce the individual components of the affricates first:
 - Plosives: t/d
 - Affricates: ∫/₃
- Have the child produce the plosive component with the teeth closed and lips rounded, which will result in the affricate

Lateral Lisp

- A lateral lisp is caused by interference of the anterior airflow during sibilant production
- Interference can be caused by:
 - Abnormal position of the teeth (obligatory distortion)
 - Abnormal placement of the tongue tip or dorsum of the tongue (articulation error)

Science Experiment

- Hold your tongue on your alveolar ridge while you prolong an /s/ sound
- Produce a /t/ sound but don't drop your tongue during the airflow release
- Both of these will cause a lateral lisp

Lateral Lisp

 To determine if the airflow is central or lateral, put a straw in front of the teeth and then to the sides during the production of the /s/

Lateral Lisp

- If normal, air through straw will be heard when it is in front of the central incisors
- If lateral, air through straw will be heard somewhere on the side of the dental arch

Pharyngeal Fricative

- Pharyngeal fricative is a common compensatory production for kids with VPI
- This placement will persist after surgical correction.
- A pharyngeal fricative substitution can also be found in children with NO history of cleft or VPI

Pharyngeal Fricative

- Because the pharyngeal fricative uses airflow in the pharynx, it causes phoneme-specific nasal emission (PSNE)
- It sounds like VPI but it's not.

- The technique for correction is exactly the same
- The beginning incorrect placement (whether in the pharynx or the oral cavity) is irrelevant
- The goal of therapy for both is to achieve normal placement and anterior airflow in the oral cavity

- Have the child produce a /t/ sound
- Provide auditory and tactile feedback of the anterior airflow:
 - Have the child put his hand in front of his mouth and feel the airstream during production
 - Have the child put a straw in front of his teeth and push the air into the straw during production

- Have produce the /t/ with the teeth closed
- Have the child prolong the production until it becomes /tssss/ with air going through the straw
- Transition to the syllable by inserting an /h/ between the /s/ and vowel
- Use this technique for /ʃ/ if needed

 Note: /h/ is a good transition sound between corrected sounds and the vowel

Video 13: Therapy for a Lateral or Pharyngeal Fricative

Video 14: Therapy for a Lateral or Pharyngeal Fricative

Insertion of /h/ for transition from consonant to the vowel

Video 15: Therapy for a Lateral or Pharyngeal Fricative

Video 16: Therapy for a Lateral or Pharyngeal Fricative

Feedback using a straw

Video 17: Therapy for a Lateral or Pharyngeal Fricative

• Feedback using a straw or a listening tube

Video 18: Therapy for a Lateral or Pharyngeal Fricative

 Correcting placement eliminates the phonemespecific nasal emission (PSNE)

Blends

 It's important to divide the consonants into individual components and then blend them together slowly

/I/ Blends

- Plosives + /l/: Add the /ah/ vowel as a transition
 - Play = pa... lay
 - Blue = ba... lu
 - Clay = ca... lay
 - Clue = ca... lue

/I/ Blends

- Fricative + /l/: Prolong the fricative and then produce the /l/ with the rest of the word
 - flew = fff... lu
 - slay = sss... lay

/s/ Blends

- When /s/ is followed by the letters "p," "t," or "k," these sounds are actually voiced.
- Therefore, /s/ blends with a plosive should be divided as follows:
 - spell = s... bell
 - stop = s... dop
 - skate = s... gate

/r/ Blends

- Have the child produce the sound before the "r" in a syllable with the vocalic /»/
 - Tree = ter... ee
 - Fry = fer... y

General Principles of Speech Therapy

Priorities

Considerations in determining phoneme priorities:

- Stimulability
- Intelligibility
- Continuants
- Placement of production
- Word position

Stimulability

- Determine the sound(s) with good stimulability
- Start out with the easiest sounds for quick success

Intelligibility

 Choose the sound(s) which will have the greatest impact on intelligibility (i.e., /s/ before /f/)

Continuants

- When working on placement, always start with a continuant (which you can hold), if possible
- Examples include:
 - Bilabials: /m/
 - Lingual-alveolars: /n/
 - Velars: /ŋ/

Place of Production

- Start with anterior sounds before posterior sounds
- Examples: bilabials and lingual-alveolars before velars

Word Position

- Start with CV productions, and then the initial position before the medial or final position
- The exception is "r"
 - Final /ə/ should be corrected before the initial or medial /r/)

Oral-Motor Exercises

- "Exercises" do not work!!!
- There is NO evidence that exercises help with speech sound disorders
- Strengthening muscles doesn't even make sense

Lof, G. L. (2008). Controversies surrounding nonspeech oral motor exercises for childhood speech disorders. *Seminars in Speech and Language, 29*(4), 253–255.

Lof, G. L. (2011). Science-based practice and the speech-language pathologist. *International Journal of Speech-Language Pathology*, 13(3), 189–196.

Lof, G. L., & Watson, M. M. (2008). A nationwide survey of nonspeech oral motor exercise use: Implications for evidence-based practice. *Language Speech Hearing Services Schools, 39*(3), 392–407.

MOTOR LEARNING & MOTOR MEMORY FOR CARRYOVER

Motor Learning & Motor Memory

- Speech requires motor movement that is fast, complex, automatic and effortless
- This is accomplished by *motor learning* and *motor memory*

Schmidt, R. A., & Lee, T. D. (2011). *Motor control and learning: A behavioral emphasis,* (5th ed.). Champaign, IL: Human Kinetics.

Motor Learning

Motor learning: Acquisition of new motor skills in order to execute complex motor movements and sequences

Motor learning is dependent on:

- Instructions
- Trial and error
- Feedback

Motor Learning

- Results in the development, change or refinement of a motor program (i.e., change in production of a speech sound)
- This is what occurs in speech therapy when the SLP teaches placement and provides feedback

Motor Memory

- Motor memory: Develops automaticity of the newly learned motor movement
- Is dependent on constant repetition (e.g., PRACTICE!)

Practice

- Results in brain reorganization due to neural plasticity
- Allows movement to be done without conscious thought
- Results in "carry-over" into connected speech

Practice

- Practice is necessary for all types of motor learning
- Examples:
 - Ballroom dancing
 - Sports
 - Playing a musical instrument
 - Speech

Ruscello, D. & Vallino, L. The Application of Motor Learning Concepts to the Treatment of Children with Compensatory Speech Sound Errors, *SIG 5 Perspectives on Speech Science and Orofacial Disorders*, October 2014, Vol. 24, 39-47. doi:10.1044/ssod24.2.39

Practice Dose

- Dose: Number of correct responses in a practice session (in therapy or at home)
- Higher dose per practice session is directly related to the rate of progress

Baker, E. Optimal intervention intensity in speech-language pathology: discoveries, challenges, and unchartered territories, *International Journal of Speech Language Pathology*, 14 (5), 478-85.

Practice in Therapy

- Use tokens and work quickly
- DRILL to increase the dose

Practice in Therapy

Procedure

- Hold the token by the side of your mouth
 - This brings the child's attention to your face
- Have the child imitate a sound or word
- Put the token in the container quickly and say "Good talking" or something similar
- Work fast to get as many tokens as possible

Practice Distribution

- Distributed practice (practice throughout the week) facilitates both short-term performance and longterm learning
- Home practice is ESSENTIAL!

 Speech therapy is like taking piano lessons—if you don't practice at home, you don't learn to play the piano!

 Need to train the parents/family members to work with the patient at home

- Frequent short practice sessions throughout the day and week are better than a few long sessions
- A 30 second practice session counts

- Practice throughout the day (i.e., while doing daily chores, just before dinner, during a bath)
- Have practice material in the car and on the iPad.
- Have the child sing with favorite songs using the target sound and a vowel.
- Incorporate practice into homework. Have the child read out loud.

Child's Name: ______Practice Log Start Date: _

Practice between sessions will greatly increase your child's success in speech therapy. It is better to practice several times each a day, than to practice a long time once a day. A practice session can be as short as 30 seconds.

	Mon	Tues	Wed	Thurs	Fri	Sat	Sun	Total
# of times								
	Mon	Tues	Wed	Thurs	Fri	Sat	Sun	Total
# of times								
	Mon	Tues	Wed	Thurs	Fri	Sat	Sun	Total
# of times								
	Mon	Tues	Wed	Thurs	Fri	Sat	Sun	Total
# of times								

SUMMARY

Summary: What to Do

- Increase sensory awareness of correct versus incorrect sound production
- Use appropriate placement techniques
- Incorporate daily practice and drill work for motor memory and carry-over

Summary: What NOT to do

- Do not work on obligatory distortions due to abnormal structure
- Do not use oral-motor "exercises" or blowing and sucking

Goal of Treatment

Normal speech production in connected speech

www.cincinnatichildrens.org/speech For Healthcare Professionals Lecture Notes

To sign up for SLP Tools from Cincinnati Children's, go to the following link:

http://www.speechpathology.com/files/a/01300/0139 9/cp0616cchmcenews15151-2.png

QUESTIONS?

Thanks for your interest!

