Raphael Kopan, PhD

Director, Division of Developmental Biology

Professor, UC Department of Pediatrics

Phone 513-636-1299

Notch signaling; kidney organogenesis; skin organogenesis; TSLP signaling in cancer

Visit the Kopan Lab.

Raphael Kopan, PhD, who is a professor of developmental biology at Cincinnati Children's Hospital Medical Center within the University of Cincinnati College of Medicine, has carried out seminal work in the field of Notch biology. This work has, and continues to have, an enormous impact on our understanding of normal tissue development and renewal, Alzheimer's disease and cancer-related research. In deciphering the mode of Notch activation and demonstrating the use of inhibitors to modulate Notch activity, Dr. Kopan's work laid the groundwork for the therapeutic use of γ-secretase inhibitors in the treatment of cancers, currently in clinical trials. His current interests in organogenesis are focused on two modular organs - skin and kidney - in which his group is trying to understand how interplay among the same seven pathways results in activation of distant programs. Dr. Kopan's work has resulted in 120 scientific articles as of 2013. He is the co-inventor of one patent, and he has served on scientific advisory boards as well as being a consultant to the pharmaceutical industry.

BS, MsC: Department of Zoology, Tel-Aviv University, Israel.

PhD: Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL.

Post-doctoral training: The Fred Hutchinson Cancer Research Center, Seattle, WA.

View PubMed Publications

Chen S, Brunskill EW, Potter SS, Dexheimer PJ, Salomonis N, Aronow BJ, Hong CI, Zhang T, Kopan R. Intrinsic Age-Dependent Changes and Cell-Cell Contacts Regulate Nephron Progenitor Lifespan. Developmental Cell. 2015;35:49-62.

Hass MR, Liow HH, Chen X, Sharma A, Inoue YU, Inoue T, Reeb A, Martens A, Fulbright M, Raju S, Stevens M, Boyle S, Park JS, Weirauch MT, Brent MR, Kopan R. SpDamID: Marking DNA Bound by Protein Complexes Identifies Notch-Dimer Responsive Enhancers. Molecular Cell. 2015;9(4):685-697.

Demitrack ES, Gifford GB, Keeley TM, Carulli AJ, VanDussen KL, Thomas D, Giordano TJ, Liu Z, Kopan R, Samuelson LC. Notch signaling regulates gastric antral LGR5 stem cell function. EMBO J. 2015 Aug 12.

Liu Z, Brunskill E, Varnum-Finney B, Zhang C, Zhang A, Jay PY, Bernstein I, Morimoto M, Kopan R. The intracellular domains of Notch1 and 2 are functionally equivalent during development and carcinogenesis. Development. 2015;142:2452-2463.

Liu Z, Brunskill E, Boyle S, Chen S, Turkoz M, Guo Y, Grant R, Kopan R. Second-generation Notch1 activity-trap mouse line (N1IP::CreHI) provides a more comprehensive map of cells experiencing Notch1 activity. Development. 2015 Mar 15;142(6):1193-202.

Demehri S, Yockey LJ, Visness CM, Jaffee KF, Turkoz A, Wood RA, O'Connor GT, Kattan M, Gern JE, Gergen PJ, Holtzman M, Bloomberg G, Kopan R. Circulating TSLP associates with decreased wheezing in non-atopic preschool children: Data from the URECA birth cohort. Clin Exp Allergy. 2014 Jun;44(6):851-7.

Zhao ZQ, Huo FQ, Jeffry J, Hampton L, Demehri S, Kim S, Liu XY, Barry DM, Wan L, Liu ZC, Li H, Turkoz A, Ma K, Cornelius LA, Kopan R, Battey JF Jr, Zhong J, Chen ZF. Chronic itch development in sensory neurons requires BRAF signaling pathways. J Clin Invest. 2013 Nov;123(11):4769-80.

Chillakuri CR, Sheppard D, Ilagan MX, Holt LR, Abbott F, Liang S, Kopan R, Handford PA, Lea SM. Structural analysis uncovers lipid-binding properties of notch ligands. Cell Rep. 2013 Nov 27;5(4):861-7.

Boyle SC1, Liu Z, Kopan R. Notch signaling is required for the formation of mesangial cells from a stromal mesenchyme precursor during kidney development. Development. 2014 Jan;141(2):346-54.

Satpathy AT, Briseño CG, Lee JS, Ng D, Manieri NA, Kc W, Wu X, Thomas SR, Lee WL, Turkoz M, McDonald KG, Meredith MM, Song C, Guidos CJ, Newberry RD, Ouyang W, Murphy TL, Stappenbeck TS, Gommerman JL, Nussenzweig MC, Colonna M, Kopan R, Murphy KM. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat Immunol. 2013 Sep;14(9):937-48.