Daniel T. Starczynowski, PhD

Associate Professor, UC Department of Pediatrics

Daniel T. Starczynowski, PhD, received his PhD in molecular biology from Boston University. He studied the NF-kB family of transcription factors and their role in B-cell lymphomas. During his postdoctoral fellowship at the BC Cancer Research Center, Dr. Starczynowski identified and characterized novel candidate genes in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML).

Following his postdoctoral training, Dr. Starczynowski joined the faculty at Cincinnati Children’s Hospital Medical Center and at the University of Cincinnati as an assistant professor. Dr. Starczynowski’s laboratory is continuing to investigate the molecular and cellular basis of MDS. The current objective of his research program is to understand the contribution of MDS-associated miRNAs and their targeted genes to the pathogenesis of MDS and progression to AML. He hopes that understanding some of the molecular causes of MDS will enhance our insight into the biology of MDS, and provide novel targeted therapies.

BS: Fairleigh Dickinson University, Teaneck, NJ, 2000.

PhD: Boston University, Boston, MA, 2006.

Postdoctoral Fellow: University of British Columbia/BC Cancer Research Centre, Vancouver, Canada, 2010.

View PubMed Publications

Varney ME, Niederkorn M, Konno H, Matsumura T, Gohda J, Yoshida N, Akiyama T, Christie S, Fang J, Miller D, Jerez A, Karsan A, Maciejewski JP, Meetei RA, Inoue J, Starczynowski DT. Loss of Tifab, a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor-TRAF6 signaling. J Exp Med. 2015 Oct 19;212(11):1967-85.

Varney ME, Melgar K, Niederkorn M, Smith MA, Barreyro L, Starczynowski DT. Deconstructing innate immune signaling in myelodysplastic syndromes. Exp Hematol. 2015 Aug;43(8):587-98.

Fang J, Barker B, Bolanos L, Liu X, Jerez A, Makishima H, Christie S, Chen X, Rao DS, Grimes HL, Komurov K, Weirauch MT, Cancelas JA, Maciejewski JP, Starczynowski DT. Myeloid malignancies with chromosome 5q deletions acquire a dependency on an intrachromosomal NF-κB gene network. Cell Rep. 2014 Sep 11;8(5):1328-38.

Zhao JL, Starczynowski DT. Role of microRNA-146a in normal and malignant hematopoietic stem cell function. Front Genet. 2014 Jul 9;5:219.

Rhyasen GW, Wunderlich M, Tohyama K, Garcia-Manero G, Mulloy JC, Starczynowski DT. An MDS xenograft model utilizing a patient-derived cell line. Leukemia. 2014 May;28(5):1142-5.

Rhyasen GW, Bolanos L, Fang J, Jerez A, Wunderlich M, Rigolino C, Mathews L, Ferrer M, Southall N, Guha R, Keller J, Thomas C, Beverly LJ, Cortelezzi A, Oliva EN, Cuzzola M, Maciejewski JP, Mulloy JC, Starczynowski DT. Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. Cancer Cell. 2013 Jul 8;24(1):90-104.

Fang J, Rhyasen G, Bolanos L, Rasch C, Varney M, Wunderlich M, Goyama S, Jansen G, Cloos J, Rigolino C, Cortelezzi A, Mulloy JC, Oliva EN, Cuzzola M, Starczynowski DT. Cytotoxic effects of bortezomib in myelodysplastic syndrome/acute myeloid leukemia depend on autophagy-mediated lysosomal degradation of TRAF6 and repression of PSMA1. Blood. 2012 Jul 26;120(4):858-67.

Starczynowski DT, Lockwood WW, Deléhouzée S, Chari R, Wegrzyn J, Fuller M, Tsao MS, Lam S, Gazdar AF, Lam WL, Karsan A. TRAF6 is an amplified oncogene bridging the RAS and NF-κB pathways in human lung cancer. J Clin Invest. 2011 Oct;121(10):4095-105.

Starczynowski DT, Morin R, McPherson A, Lam J, Chari R, Wegrzyn J, Kuchenbauer F, Hirst M, Tohyama K, Humphries RK, Lam WL, Marra M, Karsan A. Genome-wide identification of human microRNAs located in leukemia-associated genomic alterations. Blood. 2011 Jan 13;117(2):595-607.

Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A, Hirst M, Hogge D, Marra M, Wells RA, Buckstein R, Lam W, Humphries RK, Karsan A. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med. 2010 Jan;16(1):49-58.