A photo of Dan Wiginton.

Dan Wiginton, PhD

Associate Professor, UC Department of Pediatrics

Phone 513-636-4547

Fax 513-636-4317

Email dan.wiginton@cchmc.org

Gene regulation and development; regulatory factor networks; enhancers; chromatin Modulation

Visit the Wiginton Lab.

Dan Wiginton, PhD, has been in the Department of Pediatrics at Children's Hospital and the University of Cincinnati since 1984. The principal focus of his work during that time has been basic research and research training of graduate students and postdoctoral fellows. Dr. Wiginton's current research interests are directed toward an understanding of the genetic regulatory networks that govern tissue and organ development, as well as the cell-type specific differentiation that underlies this development.

Dr. Wiginton's lab uses the human adenosine deaminase (ADA) gene as a model system to investigate tissue-specific gene expression and the mechanisms that govern it. Transgenic mouse technology has been utilized heavily in these studies, allowing investigation of these questions in vivo. With the ADA model, studies have been carried out to understand thymocyte differentiation in thymus (critical to development of the immune system) and epithelial development in small intestine (critical to normal nutrient utilization).

Prior to coming to Cincinnati, Dr. Wiginton carried out postdoctoral training at the University of Kentucky in Lexington and at the University of Texas Health Sciences Center in San Antonio under Dr. John Hutton. While at these institutions, Dr. Wiginton's research focused on characterization of the normal human ADA protein and gene, and defects in ADA structure and function that cause severe combined immunodeficiency disease(SCID). These studies included collaborations in very early studies directed toward stem cell gene therapy to correct ADA-deficient SCID. Dr. Wiginton carried out his graduate studies at the University of Texas (Austin) under Dr. William Shive. He was awarded a PhD in Biochemistry in 1978, for studies in the area of bacterial enzyme expression and regulation. These studies investigated the biosynthesis and intermediary metabolism of the branched-chain amino acids (valine/leucine/isoleucine).

PhD: The University of Texas at Austin, 1978.

Postdoctoral Fellowship: University of Kentucky, Lexington, KY, 1978-1980.

Fellow / Chemist: Dept. of Hematology, UTHSC-San Antonio and Audie Murphy VA Hospital, San Antonio, TX, 1980-1984.

Dusing MR, Maier EA, Aronow BJ, Wiginton DA. Onecut-2 knockout mice fail to thrive during early postnatal period and have altered patterns of gene expression in small intestine. Physiol Genomics. 2010 Jun;42(1):115-25.

Akeson A, Herman A, Wiginton D, Greenberg J. Endothelial cell activation in a VEGF-A gradient: relevance to cell fate decisions. Microvasc Res. 2010 Jul;80(1):65-74. 

Maier EA, Dusing MR, Wiginton DA. Temporal regulation of enhancer function in intestinal epithelium: a role for Onecut factors. J Biol Chem. 2006 Oct 27;281(43):32263-71.

Mallory BP, Mead TJ, Wiginton DA, Kulkarni RM, Greenberg JM, Akeson AL. Lymphangiogenesis in the developing lung promoted by VEGF-A. Microvasc Res. 2006 Jul-Sep;72(1-2):62-73.