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ABSTRACT
Previous literature suggests that depression impacts vocal
timing of both participants and clinical interviewers but is
mixed with respect to acoustic features. To investigate fur-
ther, 57 middle-aged adults (men and women) with Ma-
jor Depression Disorder and their clinical interviewers (all
women) were studied. Participants were interviewed for de-
pression severity on up to four occasions over a 21 week pe-
riod using the Hamilton Rating Scale for Depression (HRSD),
which is a criterion measure for depression severity in clinical
trials. Acoustic features were extracted for both participants
and interviewers using COVAREP Toolbox. Missing data
occurred due to missed appointments, technical problems,
or insufficient vocal samples. Data from 36 participants
and their interviewers met criteria and were included for
analysis to compare between high and low depression sever-
ity. Acoustic features for participants varied between men
and women as expected, and failed to vary with depression
severity for participants. For interviewers, acoustic char-
acteristics strongly varied with severity of the interviewee’s
depression. Accommodation - the tendency of interactants
to adapt their communicative behavior to each other - be-
tween interviewers and interviewees was inversely related to
depression severity. These findings suggest that interview-
ers modify their acoustic features in response to depression
severity, and depression severity strongly impacts interper-
sonal accommodation.
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1. INTRODUCTION
Diagnosis and assessment of depression is almost entirely

informed by what patients, their families, or caregivers re-
port. Standardized procedures for incorporating nonverbal
behavior and voice characteristics, in particular, are lacking.
Their absence is especially salient for depression, a mood
disorder for which disruption in emotion experience, com-
munication, and self-regulation are key features [1, 69, 14,
20]. Within the past decade, significant progress has been
made in linking voice characteristics to emotion [26, 39, 61,
2, 68], turn-taking, reciprocity [19, 55], and a broad range
of interpersonal outcomes [38, 54]. There is strong reason to
believe that automatic analysis of voice characteristics could
provide a powerful tool to assist in detection and assessment
of depression over the course of treatment and recovery. Im-
proved measurement and understanding of the relation be-
tween depression and voice characteristics could aid early
detection, and lead to better understanding of mechanisms
and improved interventions. The lower vocal tract is in-
nervated by the vagal nerve, and thus provides important
information about the peripheral physiology of depression
[51, 56]. Because depression is one of the most prevalent
mental health disorders [44] and a leading cause of disabil-
ity worldwide [52], the potential contribution of improved
measurement is great.

The timing, amplitude, and acoustic features of speech
have been investigated [63, 60]. Several investigations have
revealed reduced speech variability and monotonicity in loud-
ness and pitch [50, 13, 47, 25], reduced speech [33], reduced
articulation rate [11], and increased pause duration [63, 6]
when compared to non-depressed comparison participants.
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Varied switching pause duration was found to be correlated
with depression severity in a within-subject analysis [66].
Findings for acoustic features in general have found depres-
sion effects, as well. These effects include increased tension
in the vocal tract and the vocal folds in between-subject
studies [13, 59], and speech characteristics related to psy-
chomotor retardation [22, 62]. Yang et al. [66], however,
found no differences in fundamental frequency (f0) in rela-
tion to depression severity.

With two notable exceptions, previous work has focused
on depressed participants and ignored the interview context
and their interviewers in particular. Scherer et al. [58] stud-
ied suicidal adolescents who were depressed and their inter-
viewers. Suicidal adolescents had more breathy voice quali-
ties than non-suicidal comparison participants, interviewers’
acoustic characteristics were correlated with these changes.
Backchannels provided by the interviewer were more breathy
when they were interviewing suicidal adolescents. Yang et
al. [66] found that interviewer, but not interviewee, f0 mean
and variability showed a strong relationship with severity of
depression. Interviewers used lower and more variable f0
when speaking with participants who were more depressed
than they did when speaking with participants who were
less depressed.

A number of factors might account for the discrepancy
with respect to acoustic features between the different stud-
ies. The participants in Yang et al., study all met criteria
for Major Depressive Disorder and were studied with re-
spect to change in severity over time. Other studies have
compared depressed and non-depressed participants. Per-
haps most important, the analysis of acoustic characteris-
tics by Yang et al. was limited to f0. Other work has more
comprehensively analyzed acoustic features. To investigate
whether the reduced feature set in Yang et al. may have
accounted for this discrepancy, we analyze their recordings
using more comprehensive, state of the art procedures to
assess voice characteristics related to both prosody as well
as voice quality, collected in a freely available speech sig-
nal processing toolbox [16]. Further, we address the dyadic
analysis of acoustic and nonverbal accommodation, which
represents the major novelty of this study.

2. METHODS AND MATERIALS

2.1 Participants
Fifty-seven depressed participants (34 women, 23 men)

were recruited from a clinical trial for treatment of depres-
sion. They ranged in age from 19 to 65 years (mean = 39.65)
and were Euro- or African-American (46 and 11, respec-
tively). At the time of study intake, all met DSM-IV [1] cri-
teria [21] for Major Depressive Disorder (MDD). Although
not a focus of this report, participants were randomized to
either anti-depressant treatment with a selective serotonin
re-uptake inhibitor (SSRI) or Interpersonal Psychotherapy
(IPT). Both treatments are empirically validated for treat-
ment of depression [37].

2.2 Observational Procedures
Symptom severity was evaluated on up to four occasions

at 1, 7, 13, and 21 weeks by ten clinical interviewers (all
female). Interviewers were not assigned to specific partici-
pants, and they varied in the number of interviews they con-
ducted. Four interviewers were responsible for the bulk of

the interviews. The median number of interviews per inter-
viewer was 14.5; four conducted six or fewer. Interviews were
conducted using the Hamilton Rating Scale for Depression
(HRSD) [34], which is a criterion measure for assessing sever-
ity of depression. Interviewers all were expert in the HRSD
and reliability was maintained above 0.90. HRSD scores of
15 or higher are generally considered to indicate moderate
to severe depression; and scores of 7 or lower to indicate a
return to normal [24]. We used these cut-off scores to define
the two conditions of high depression and low depression in
this study. Subjects scoring between cut-off scores 7 and 15
were excluded from the analysis.

Interviews were recorded using four hardware synchro-
nized analogue cameras and two unidirectional microphones.
Two cameras were positioned approximately 15◦ to the par-
ticipant’s left and right to record their shoulders and face.
A third camera recorded a full body view while a fourth
recorded the interviewer’s shoulders and face from approxi-
mately 15◦ to their right. Audio was digitized at 48 kHz and
later down-sampled to 16 kHz for speech processing. Miss-
ing data occurred due to missed appointments, or technical
problems. Technical problems included failure to record au-
dio or video, audio or video artifacts, and insufficient amount
of data. To be included for analysis, we required a minimum
of 20 speaker turns with at least 3 seconds in length and at
least 50 seconds of vocalization in total. Thus, the final sam-
ple was 61 sessions from 36 participants; 47 score high on
HRSD and 14 low.

2.3 Preprocessing
To attenuate noise as well as to equalize intensity, Adobe

Audition II [54] was used to reduce noise level and equalize
intensity. An intermediate level of 40% noise reduction was
used to achieve the desired signal-to-noise ratio without dis-
torting the original signal. Each pair of recordings was tran-
scribed manually using Transcriber software [7] and then
force-aligned using CMU Sphinx III [2] post-processed using
Praat [8]. Because session recordings exceeded the mem-
ory limits of Sphinx, it was necessary to segment recordings
prior to forced alignment. While several approaches to seg-
mentation were possible, we segmented recordings at tran-
scription boundaries; that is, whenever a change in speaker
occurred. Except for occasional overlapping speech, this ap-
proach resulted in speaker-specific segments. Forced align-
ment produced a matrix of four columns: speaker (which en-
coded both individual and simultaneous speech), start time,
stop time, and utterance. To assess the reliability of the
forced alignment, audio files from 30 sessions were manu-
ally aligned and compared with the segmentation yielded
by Sphinx. Mean error (s) for onset and offset, respectively,
were .097 and .010 for participants and .053 and .011 for
interviewers.

The forced alignment timings were used to identify speaker-
turns and speaker diarization for the subsequent automatic
feature extraction (cf. Section 2.4).

2.4 Acoustic Features
For the processing of the speech signals, we use the freely

available COVAREP toolbox, a collaborative speech analy-
sis repository available for Matlab and Octave [16]1. CO-
VAREP provides an extensive selection of open-source ro-

1http://covarep.github.io/covarep/
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bust and tested speech processing algorithms enabling com-
parative and cooperative research within the speech commu-
nity.

The extracted acoustic features were chosen based on pre-
vious encouraging results in classifying voice patterns of sui-
cidal adolescents and distressed adults [58, 59] as well as
the features’ relevance for characterizing voice qualities on
a breathy to tense dimension [57, 42]. Below we introduce
the utilized speech features in more detail.

2.4.1 Fundamental Frequency (f0)
In [18], a method for fundamental frequency f0 tracking

and simultaneous voicing detection based on residual har-
monics is introduced. The method is especially suitable in
noisy and unconstrained conditions. The residual signal r(t)
is calculated from the speech signal s(t) for each frame using
inverse filtering, for all times t. In particular, we utilize a lin-
ear predictive coding (LPC) filter of order p = 12 estimated
for all Hanning windowed speech segments. Each speech seg-
ment has the length of 25 ms and is continuously shifted by
5 ms. This process removes strong influences of noise and
vocal tract resonances. For each r(t) the amplitude spec-
trum E(f) is computed, revealing peaks for the harmonics
of f0, the fundamental frequency. Then, the summation of
residual harmonics (SRH) is computed as follows [18]:

SRH(f) = E(f) +

Nharm∑
k=2

[E(k · f)− E((k − 1

2
) · f)], (1)

for f ∈ [f0,min, f0,max], with f0,min = 50, f0,max = 500,
and Nharm = 5. The frequency f for which SRH(f) is
maximal f0 = arg maxf (SRH(f)) is considered the funda-
mental frequency of the investigated speech frame. By using
a simple threshold θ = 0.07, the unvoiced frames can be dis-
carded as in [18]. Unvoiced samples, i.e. times when no
vocal fold vibration is present, are not analyzed for any of
the extracted features.

2.4.2 Maxima Dispersion Quotient (MDQ) and Peak
Slope (PS)

The Maxima Dispersion Quotient (MDQ) and the Peak
Slope (PS) measure involve a dyadic wavelet transform us-
ing g(t), a cosine-modulated Gaussian pulse similar to that
used in [12] as the mother wavelet:

g(t) = −cos(2πfnt) · exp
(
− t2

2τ2

)
(2)

where the sampling frequency fs = 16 kHz, fn = fs
2

, τ =
1

2fn
and t is time. The wavelet transform, yi(t), of the input

signal, x(t), at the ith scale, si, is calculated by:

yi(t) = x(t) ∗ g
(
t

si

)
(3)

where ∗ denotes the convolution operator and si = 2i.
This functions essentially as an octave band zero-phase fil-
ter bank. For the PS feature [40], the speech signal is used
as x(t) in Eq. (3). Maxima are measured across the scales,
on a fixed-frame basis, and a regression line is fit to these
maxima. The slope of the regression line for each frame
provides the peakSlope value. The feature is essentially an
effective correlate of the spectral slope of the signal. Finally,
the measurement of the maxima dispersion quotient (MDQ,

[41]) uses the Linear Prediction (LP) residual as x(t) in Eq.
(3). Then using the GCIs, located using SE-VQ, the dis-
persion of peaks in relation to the GCI position is averaged
across the different frequency bands and then normalized to
the local glottal period. For tense voice, where the sharp
closing of the glottis is analogous to an impulse excitation
the maxima are tightly aligned to the GCI, whereas for laxer
phonation the maxima become highly dispersed.

2.4.3 Normalized Amplitude Quotient (NAQ)
The normalized amplitude quotient (NAQ) feature is de-

rived from the glottal source signal estimated by iterative
adaptive inverse filtering (IAIF, [4]). The output is the dif-
ferentiated glottal flow. The normalized amplitude quotient
(NAQ, [5]) is calculated using:

NAQ =
fac

dpeak · T0
, (4)

where dpeak is the negative amplitude of the main excitation
in the differentiated glottal flow pulse, while fac is the peak
amplitude of the glottal flow pulse and T0 the length of the
glottal pulse period.

NAQ is a direct measure of the glottal flow and glottal flow
derivative and as an amplitude based parameter, was shown
to be more robust to noise disturbances than parameters
based on time instant measurements and has, as a result,
been used in the analysis of conversational speech [10], which
is frequently noisy. The parameter, however, may not be as
effective as a voice quality indicator when a speaker is using
a wide f0 range [29].

2.4.4 Quasi Open Quotient (QOQ)
The quasi-open quotient (QOQ, [32]) is also derived from

amplitude measurements of the glottal flow pulse and is a
frequently used correlate of the open quotient OQ, i.e. the
period the vocal folds are open. OQ is a salient measurement
of the glottal pulse, thought to be useful for discriminating
breathy to tense voice [35, 36, 64]. OQ can be defined as
the duration of the glottal open phase normalized to the lo-
cal glottal period. The quasi-open period is measured by
detecting the peak in the glottal flow and finding the time
points previous to and following this point that descend be-
low 50% of the peak amplitude. The duration between these
two time-points is divided by the local glottal period to get
the QOQ parameter.

Below the investigated speech parameters are specified
with subscripts P and I to specify if they relate to partici-
pants or interviewers speech respectively.

2.5 Accommodation Analysis
Accommodation, also described under the terms conver-

gence [27] [53], entrainment [9], or mimicry [54], refers to
the tendency of interactants to adapt their communicative
behavior to each other.

To measure the synchrony in the development of the ex-
tracted speech parameters for each interactant we utilized
the standard Pearson correlation coefficient ρ ∈ [−1, 1], that
measures linear dependencies between two sets of observa-
tions x and y:

ρxy =

∑N
i=1(xi − µx)

∑N
i=1(yi − µy)

(N − 1)σxσy
, (5)
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where |x| = |y| = N the length of the observation set,
µx the mean value of x (respectively µy) , σx the standard
deviation of x (respectively σy), and xi ∈ x ∀i = 1, ..., N
(respectively yi). For large ρxy > 0 we have strong linear
dependencies, which indicates a synchronous behavior of the
prosodic parameters over the analyzed fragment. Small val-
ues ρxy < 0 indicate strong asynchronous developments of
the observed parameters. For values close to zero no lin-
ear correlation is observed, i.e. a state of maintenance is
present.

Within this study, we investigate correlation between par-
ticipants’ and interviewers’ speech characteristics using a
time-aligned moving average approach [15]. Interviews were
subdivided into successive segments of 50 seconds with 10
second shifts (i.e. 40 seconds overlap). For each segment,
characteristics for both the participant and the respective
interviewer are computed. This results in a time series of
observations for both the interviewer and the participant.
A Pearson correlation ρ was computed for each observed
feature for each interview.

The observed accommodation between the participants’
and interviewers’ acoustic parameters are denoted as ρ with
the respective acoustic parameter as subscripts.

3. DATA ANALYSES AND RESULTS
We investigated the acoustic characteristics of participants,

interviewers, and the accommodation between participants
and interviewers during high depression severity and low
severity, respectively.

3.1 Condition Effects on Participant Behavior
Do acoustic characteristics of participants vary with de-

pression severity? In particular, we investigate acoustic pa-
rameters characterizing the participants’ voice quality on a
breathy to tense dimension.

Table 1: Participant acoustic parameter correlation.
P for participants.

f0,P MDQP PSP NAQP QOQP

f0,P 1 .711∗∗ .614∗∗ -.402∗∗ -.520∗∗

MDQP 1 .400∗∗ -.020 -.315∗∗

PSP 1 -.507∗∗ -.540∗∗

NAQP 1 .847∗∗

QOQP 1

Because speech parameters were highly correlated (Table
12), they were analyzed using MANOVA. Depression sever-
ity, sex, and their interaction were included as covariates.
There was no effect for depression severity (F(5, 55) = 1.759,
p = .137) or sex-by-depression severity interaction (F(5, 55)
= 0.964, p = .448). There was a significant effect for sex
(F(5, 55) = 5.339, p < .01).

Follow-up F tests revealed significant sex effects for all
speech parameters with the exception of NAQP . As ex-
pected, fundamental frequency was higher for women than
for men. Further, significantly more breathy voice charac-
teristics were observed as measured with MDQP , and more
tense voice characteristics as measured using PSP as well as
QOQP , for details see Table 2

2All p-values of statistical tests < .05 and < .01 are denoted
with ∗ and ∗∗ respectively.

Table 2: Follow-up F test results for participant be-
havior depending on sex.

Women Men
µ σ µ σ

f0,P 191.77 26.24 145.05 38.26∗∗

MDQP 0.130 0.007 0.121 0.010∗∗

PSP -0.422 0.034 -0.465 0.028∗∗

QOQP 0.380 0.072 0.444 0.082∗

3.2 Condition Effects on Interviewer Behav-
ior

Do acoustic characteristics of interviewers vary with de-
pression severity?

Table 3: Interviewer acoustic parameter correlation.
I for Interviewer.

f0,I MDQI PSI NAQI QOQI

f0,I 1 .579∗∗ .546∗∗ -.134 -.239∗

MDQI 1 .202 .442∗∗ .281∗∗

PSI 1 -.224∗ -.208
NAQI 1 .934∗∗

QOQI 1

Speech parameters for interviewers were highly correlated
(Table 3) and were analyzed using MANOVA. Depression
severity, sex, and their interaction were included as covari-
ates. There was a significant effect of depression severity on
interviewers’ acoustic characteristics (F(5, 55) = 2.609, p =
.035). There was a marginally significant effect for sex (F(5,
55) = 2.121, p = .077) and no sex-by-depression severity
interaction (F(5, 55) = 0.189, p = .966).

Table 4: Follow-up F test results for interviewer be-
havior depending on depression severity and sex.

High Severity Low Severity
µ σ µ σ

PSI -0.407 0.022 -0.383 0.027∗∗

NAQI 0.099 0.022 0.086 0.015

Women Men
µ σ µ σ

f0,I 195.10 26.24 170.41 38.26∗

MDQI 0.130 0.007 0.125 0.010∗

Follow-up F tests for the individual speech parameters re-
vealed significant effects for breathier voice quality as mea-
sured by PSI and a trend to more breathy voice as measured
with NAQI . Effects for other parameters failed to reach sig-
nificance. PSI and NAQI per condition and their standard
errors are visualized in Figure 1; for details see Table 4.

Several follow-up F tests for effects of participant sex on
interviewers were significant. Fundamental frequency of the
interviewer and breathiness were higher when the partici-
pant was a woman (cf. Table 4)

3.3 Accommodation Between Interactants
Does accommodation vary with depression severity?
As discussed in Section 2.5 we compute Pearson’s ρ for all

speech parameters. The extracted accommodation param-
eters were moderately correlated (cf. Table 5). As above,
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Figure 1: Acoustic Features of Interviewer Speech
Characteristics. Observed acoustic features of in-
terviewers across conditions high depression sever-
ity (High) vs. low severity (Low). The displayed
whiskers signify standard errors and the bracket
show significant results with ∗∗ ... p < .01.

Table 5: Correlation of acoustic accommodation
measurements between participants and interview-
ers. ρ for the observed accommodation.

ρf0 ρMDQ ρPS ρNAQ ρQOQ

ρf0 1 .362∗∗ .194 .279∗ .269∗

ρMDQ 1 -.024 .236∗ .033
ρPS 1 .318∗∗ .532∗∗

ρNAQ 1 .479∗∗

ρQOQ 1

they were analyzed using MANOVA with depression sever-
ity, sex, and sex-by-depression severity interaction entered
as covariates. The effect of depression severity was signifi-
cant (F(5, 55) = 2.508, p = .037). There was no main effect
or interaction for sex (F(5, 55) = 1.648, p = .16; and F(5,
55) = 1.195, p = .320, respectively).

Table 6: Follow-up F test results for interactant ac-
commodation depending on depression severity.

High Severity Low Severity
µ σ µ σ

ρPS 0.160 0.300 0.350 0.281∗

ρQOQ 0.093 0.274 0.269 0.331∗∗

Follow-up F tests for the individual speech variables and
the observed accommodation measured as Pearson’s ρ re-
vealed significant effects for higher accommodation for low
depression severity for ρPS and ρQOQ. Effects for other pa-
rameters failed to reach significance, for details see Table
6.

The observed accommodation for ρPS and ρQOQ per con-
dition and the standard errors are visualized in Figure 2.
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Figure 2: Acoustic Accommodation between Par-
ticipants and Interviewers. Observed acoustic ac-
commodation as measured as Pearson’s ρ between
participants and interviewers across conditions high
depression severity (High) vs. low severity (Low).
The displayed whiskers signify standard errors and
the brackets show significant results with ∗ ... p <
.05 and ∗∗ ... p < .01.

4. DISCUSSION
We investigated acoustic characteristics in depressed par-

ticipants and their interviewers. The participants varied in
their level of depression severity (that is, high versus low).
For participants, of the five acoustic parameters evaluated,
none varied with depression severity. The only obtained ef-
fects were expected ones for sex. Women for example had
higher fundamental frequency. These findings for sex effects
are consistent with [45]. The lack of findings for depression
effects could be due to several factors. A methodological
reason may be that we used only a subset of the data used
by [66], as well as the use of SSRI might have influenced
speech characteristics. Further, most previous findings for
f0 effects in depression were from comparisons with non-
depressed participants [3]. Because participants with de-
pression differ in many ways from those without depression
[46], such results lack specificity for depression. Those stud-
ies that have investigated change in depression severity over
time have reported very small effect sizes that depended on
large numbers of participants [49]. Small effect sizes are
unlikely to have much utility for machine learning.

Another factor may be differences in participant charac-
teristics across studies. With the exception of [66], previous
work has compared depressed with non-depressed partici-
pants [13, 59, 65]; whereas we made comparisons within a
depressed sample. All participants met criteria for Major
Depression Disorder, all had histories of multiple, protracted
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episodes, and they varied only in their current level of sever-
ity. People with chronic history of depression may be very
different than those that have never been depressed or only
depressed in a limited way. High trait neuroticism and low
trait extraversion, for instance, are much more likely in peo-
ple with histories of chronic depression [46] These differences
may contribute to relative stability in acoustic parameters
robust to variation in depression severity.

Other factors may have been context related. In [59], par-
ticipants were interviewed by virtual humans rather than hu-
mans and the interviews included broader range of questions
[31, 17]. The latter may have occasioned more diversity in
vocal samples, and vocal timing varied markedly from that
with human interviewers. Accommodation was not possible
with the virtual humans. [48] studied depressed adolescents
in extended conversations with their two parents. In [65],
participants were involved in human-computer interaction
tasks. These factors, too, may explain the differences across
studies. Greater attention is needed to the observational
contexts and individual differences in studies.

Consistent with previous findings [66], interviewer acous-
tic characteristics showed a strong relationship with sever-
ity of depression. In particular, interviewers exhibited sig-
nificantly more breathy voice characteristics when interact-
ing with highly depressed participants. Our findings extend
the findings of Yang et al. [66] who found that interviewer
f0 mean and variability were strongly related to depression
severity. The obtained results can be explained by the in-
creased felt empathy towards the interviewee. As previously
investigated, breathy voice qualities were associated with
sad emotion, friendly attitude, and intimate interpersonal
relation in perceptual experiments [30]. Further, Scherer
et al. have previously reported more breathy voice quali-
ties in interviewers’ voice and back-channels when interview-
ing suicidal adolescents [58]. Findings such as these suggest
that depression effects are bidirectional and that nonverbal
behavior in the non-depressed interactant could provide a
sensitive barometer of depression. Behavioral differences of
interviewers may be more indicative of a participant’s con-
dition than the participant’s own behavior [67]. This fur-
ther underlines the importance to investigate the behaviors
jointly within dyadic HRSD interviews as argued in [23].

We utilized a time-aligned moving average approach to
assess acoustic accommodation within dyadic HRSD screen-
ing interviews between the interviewer and the participant.
This approach overcomes the issue of asynchronously ob-
served speech in dyadic interactions and enables the inves-
tigation of accommodation between the interactants [15].
With respect to the accommodation between interactants,
we identified a main effect of depression severity on PS and
QOQ (cf. Section 2.4). They both were inversely correlated
with depression severity. Hence, accommodation is signifi-
cantly increased for interviews where the participants have
low depression severity. These findings are consistent with
the hypothesis that a function of depression is to attenuate
interpersonal coordination in the service of social isolation
[28]. Further, prosodic accommodation has been found to
be perceptually correlated with increased perceived flow of
conversation, speaker engagement, and liking [15].

We found accommodation effects, a remaining research
question is how these effects are achieved. We might as-
sume that the direction of effects is from participant to in-
terviewer. That is, interviewers are responding to the par-

ticipants’ restricted acoustic characteristics. Alternatively,
there may be dynamic adjustments made over the course of
the interviews. Participants and interviewers may each be
both cause and effect of the other person’s behavior [43]

5. CONCLUSIONS
We investigated acoustic characteristics of depressed par-

ticipants and their interviewers in a clinical interview to as-
sess depression severity. All participants met stringent crite-
ria for Major Depressive Disorder and had histories of mul-
tiple and often lengthy episodes. They differed in whether
their symptoms were high or low at the time of the inter-
view. We found no variation in acoustic characteristics in
relation to severity for the participants. We found strong ef-
fects in interviewers of participants’ depression severity, and
we found strong accommodation effects. To the best of our
knowledge, this study is the first to reveal accommodation
for acoustic parameters related to depression severity.
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