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Abstract

The epithelium of the gastrointestinal tract is constantly renewed as it turns over. This process is triggered by the proliferation of intestinal stem
cells (ISCs) and progeny that progressively migrate and differentiate toward the tip of the villi. These processes, essential for gastrointestinal
homeostasis, have been extensively studied using multiple approaches. Ex vivo technologies, especially primary cell cultures have proven to be
promising for understanding intestinal epithelial functions. A long-term primary culture system for mouse intestinal crypts has been established
to generate 3-dimensional epithelial organoids. These epithelial structures contain crypt- and villus-like domains reminiscent of normal gut
epithelium. Commonly, termed “enteroids” when derived from small intestine and “colonoids” when derived from colon, they are different from
organoids that also contain mesenchyme tissue. Additionally, these enteroids/colonoids continuously produce all cell types found normally within
the intestinal epithelium. This in vitro organ-like culture system is rapidly becoming the new gold standard for investigation of intestinal stem cell
biology and epithelial cell physiology. This technology has been recently transferred to the study of human gut. The establishment of human
derived epithelial enteroids and colonoids from small intestine and colon has been possible through the utilization of specific culture media that
allow their growth and maintenance over time. Here, we describe a method to establish a small intestinal and colon crypt-derived system from
human whole tissue or biopsies. We emphasize the culture modalities that are essential for the successful growth and maintenance of human
enteroids and colonoids.

Video Link

The video component of this article can be found at http://www.jove.com/video/52483/

Introduction

The lining epithelium of the gastrointestinal tract is in constant renewal. This process is triggered by proliferation of intestinal stem cells (ISCs)
which continuously produce progeny to rapidly replace the intestinal epithelium as it turns over. The proliferative compartment comprising the
ISCs is confined to the bottom of the crypts. The ISCs give rise to progeny which eventually differentiate into absorptive or secretory lineages.
Moving out of the crypt and onto the villus or surface epithelium, cells differentiate progressively as they migrate upwards before exfoliation
into the lumen1. ISCs give rise to all intestinal epithelial cell types including enterocytes, microfold cells, enteroendocrine cells, goblet cells,
tuft cells and Paneth cells. The colon is characterized by elongated crypts composed mostly of colonocytes and goblet cells, with scattered
enteroendocrine and tuft cells2.

Ex vivo culture systems constitute promising tool for studying ISC maintenance and intestinal tissue homeostasis. However, it is difficult to rely
on tissue culture technologies as physiological conditions are not fully reproduced and the epithelial microenvironment often altered3,4. A major
advancement in ISC field was the establishment of tissue culture techniques to maintain and expand individual murine ISCs using defined
growth factors to replace the normal intestinal niche signals. Long-term culture conditions were described by Sato et al., in which single crypts
or isolated stem cells from the intestinal epithelium grow to form 3-dimensional epithelial structures including multiple crypt-like domains 5-7.
These tridimensional structures undergo fission events to continuously expand. Interestingly, all the intestinal cell types specific to the tissue of
origin are produced and as well are extruded into a lumen8. Using modifications of this system, epithelial organoids can be generated from the
stomach, small intestine and colon. More specifically, epithelial organoids from the small intestine are enteroids9, and those from the colon are
colonoids9,10. These epithelial organoid culture systems have been used to test the ability of isolated single cells to function as stem cells in vitro,
thus testing the “stemness” of isolated cells5,6,10-15. Other investigators have used both enteroids and colonoids to study the function of individual
epithelial cells16-21. Thus, enteroid and colonoid cultures can be used to evaluate both stem and non-stem cell functions and give new insight into
fundamental cellular interactions within the intestines.

In 2011, Sato and colleagues generated long-term culture of epithelial organoids derived from human small intestine and colon22,23. Besides
differences in media composition, the human epithelial enteroids and colonoids exhibit the same features as their murine counterpart.
Furthermore, they can be generated from diseased tissues such as Barrett’s esophagus, adenoma or adenocarcinoma, and cystic fibrosis22,24.

http://www.jove.com
http://www.jove.com
http://www.jove.com
mailto:michael.helmrath@cchmc.org
http://www.jove.com/video/52483
http://dx.doi.org/10.3791/52483
http://www.jove.com/video/52483/


Journal of Visualized Experiments www.jove.com

Copyright © 2015  Journal of Visualized Experiments January 2015 |    | e52483 | Page 2 of 13

Human enteroids constitute a valuable system to study intestinal stem-cell and epithelial mucosal biology and serve as a novel experimental
system to study both normal and abnormal gastrointestinal physiology3.

Here we describe methods to establish enteroids and colonoids from human small intestine and colon crypts (Figure 1). In this methodological
review, we emphasize the crypt collection from whole tissue and biopsies. We recapitulate the culture modalities that are essential for the
successful growth and maintenance of human enteroids and colonoids and the possible experimental strategies carried out by this model.

Protocol

NOTE: Ethics Statement: All experimentation using human tissues described herein was approved by an IRB at CCHMC (IRB #2012-2858;
#2014-0427). Informed consent for tissue collection, storage, and use of the samples was obtained from the donors at CCHMC.

1. Preparation for Culture

NOTE: All reagents are listed in Table 1.

1. Prepare EDTA stock solution as follows: prepare 0.5 M ethylenediaminetetraacetic acid, pH 8 (EDTA) in ultrapure H2O, filter sterilized with
0.22 µm filter. Optionally, store the EDTA stock solution at RT indefinitely.

2. Prepare chelating buffer as follows: mix 2% sorbitol, 1% sucrose, 1% bovine serum albumin fraction V (BSA) and 1x Gentamicin/
Amphotericin solution in Dulbecco’s Phosphate buffered saline without Ca2+ and Mg2+ (DPBS), filter sterilized with 0.22 µm filter. Prepare the
chelating buffer fresh.

3. Prepare Wnt-3A-conditioned medium as follows: Wnt-3A-conditioned medium is made in house using the cell line L Wnt-3A according to
the manufacturer’s instructions (ATCC, CRL-2647). Supplement the medium with 2 mM glutamine, 10 mM HEPES, 100 U/ml penicillin, 100 g/
ml streptomycin, 1 N2 supplement, 1 B27 supplement, 1% BSA and filter sterilized with 0.22-µm filter.
 

NOTE: Test every batch for Wnt activity using a TOPflash assay. Use a stable HEK293 TOPflash cell line (Hans Clevers lab) with a Renilla
luciferase assay kit according to the manufacturer’s instructions. Normalize the TOPflash assay with 100 ng/ml human recombinant Wnt-3A.
Confirm at least a 10 fold-change activity of the conditioned media compared to control. Divide fresh Wnt-3A-conditioned medium into 10 ml
aliquots in 15 ml conical tubes and freeze at -20°C for up to 6 months. Store thawed aliquots up to 5 days at 4°C without loss of activity.

4. Prepare human minigut medium as follows: Supplement Advanced DMEM/F12 medium with 2 mM glutamine, 10 mM HEPES, 100 U/mL
penicillin, 100 g/mL streptomycin, 1 N2 supplement, 1 B27 supplement, 1% BSA and filter sterilized with 0.22 µm filter.
 

NOTE: Divide fresh human minigut medium into 10 ml aliquots in 15 ml conical tubes and freeze at -20°C for up to 3 months. Store thawed
aliquots up to 5 days at 4°C without loss of activity.

5. Prepare complete human minigut medium as follows: Prepare fresh before crypt culture or medium change human minigut medium (see 1.4)
supplemented with 50% Wnt-3A-conditioned medium (see 1.3), 1 µg/ml R-spondin 1 (1:1,000 dilution of 1 mg/ml stock), 100 ng/ml Noggin
(1:1,000 dilution of 100 g/mL stock), 50 ng/mL EGF (1:10,000 dilution of 500 μg/mL stock), 500 nM A-83-01 (1:1,000 dilution of 500 M stock),
10 µM SB202190 (1:3,000 dilution of 30 mM stock), 10 nM [Leu]15-Gastrin 1 (1:10,000 dilution of 100 µM stock), 10 mM Nicotinamide (1:100
dilution of 1 M stock) and 1 mM N-Acetylcysteine (1:1,000 dilution of 1 M stock).
 

NOTE: Store complete human minigut media up to 2 days at 4°C without loss of activity.

2. Crypt Isolation from Whole Tissue

NOTE: From the tissue collection, it is essential to maintain the sample in saline. It is recommended to keep the tissue on ice during
transportation. Preparation of the sample for isolation of crypt should be performed as soon as possible.
 

NOTE: All reagents are listed in Table 1, tools, equipment, and consumables are listed in Table 2.

1. Prepare all the reagents before beginning the experiment. Thaw the basement membrane matrix on ice and pre-incubate a 24-well plate in a
CO2 incubator at 37°C.
 

NOTE: Alternatively make a thin layer of basement membrane matrix using 15 µl/well in the center of a 24-well plate and place it in a CO2
incubator at 37°C. This facultative step keeps the basement membrane matrix as a drop during polymerization.

2. Wash the tissue with ice-cold Dulbecco’s Phosphate buffered saline without Ca2+ and Mg2+ (DPBS). Proceed until the content of DPBS is
clear.

3. Using 0.2 mm diameter minutien pins, secure the tissue on a silicone-coated glass Petri dish filled with ice-cold DPBS. Stretch and pin the
tissue flat with the mucosal side facing up.

4. Under a dissecting microscope, remove the overlying mucosa from the submucosa and connective tissue using micro-dissecting scissors and
fine point curved forceps (Figure 2A, B).

5. Stretch and pin the dissected mucosa flat on the silicone-coated glass Petri dish with mucosal side facing up. The remaining submucosa and
connective tissue can be discarded or used for further experiments (Figure 2C).

6. Gently scrape the surface of the mucosa with curved forceps. This step is necessary to improve the quality of the preparation.
1. For small intestine, gently scrape the mucosa to remove the villi.
2. For colon, gently scrape the mucosa to remove mucous and debris.

7. Wash the mucosa 3-4 times with ice-cold chelation buffer to remove villi and debris.
8. Cover the mucosa with freshly prepared 2mM EDTA chelation buffer (200 µl 0.5 M EDTA in 49.6 ml chelation buffer).
9. Place the Petri dish on ice and shake gently for 30 min on a horizontal orbital shaker.
10. Wash the tissue 3-4 times with ice-cold chelation buffer without EDTA. After washing, leave the mucosa in ice-cold chelation buffer.
11. Process the mucosa under a dissecting microscope using curved and fine forceps. Gently scrape the mucosa to release intestinal crypts

using the curved forceps.
12. Gently remove the crypt suspension from the petri dish using a pipette and transfer it into a 50 ml conical tube.
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NOTE: check the tissue to make sure that almost all crypts have been removed from the mucosa.
13. Filter the crypts suspension through a 150 µm mesh 2 times.

 

NOTE: check the flow-through for crypt enrichment under a microscope (Figure 2D).
14. Centrifuge the crypt suspension 5 min at 50 xg, 4°C. Discard the supernatant.
15. Resuspend the pellet in 5 ml ice-cold chelation buffer.
16. Count the number of crypts per 10-µl drop from the suspension from step 2.15. Transfer the number of crypts needed for plating to a 5 ml

round-bottom tube. Use 200 to 500 crypts per well of a 24-well dish to establish enteroids or colonoids.
17. Centrifuge the crypt fraction for 10 min at 150 g, 4°C. Remove the supernatant.
18. Use crypts for subsequent culture.

3. Crypt Isolation from Biopsy

1. Prepare all the reagents before the beginning of the experiment. Thaw the basement membrane matrix on ice and pre-incubate a 24-well
plate in a CO2 incubator at 37°C.

2. Wash the biopsy with ice-cold Dulbecco’s Phosphate buffered saline without Ca2+ and Mg2+ (DPBS).
3. Using 0.1 mm diameter minutien pins, secure the biopsy on a silicone-coated glass Petri dish filled with ice-cold DPBS. Stretch and pin the

mucosa flat with the mucosal side facing up (Figure 2E).
4. Gently scrape the surface of the mucosa with curved forceps to remove villi and debris. This step is necessary to improve the quality of the

preparation.
5. Wash the biopsy 3-4 times with ice-cold chelation buffer to remove villi and debris.
6. Cover the biopsy with freshly prepared 2mM EDTA chelation buffer (200 µl 0.5 M EDTA in 49.8 ml chelation buffer).
7. Place the Petri dish on ice and shake gently for 30 min on a horizontal orbital shaker.
8. Wash the biopsy 3-4 times with ice-cold chelation buffer without EDTA. After washing, leave the biopsy in ice-cold chelation buffer.
9. Process the biopsy under a dissecting microscope using curved and fine forceps. Gently scrape the mucosa to release the intestinal crypts

using curved forceps.
10. Gently remove the crypt suspension from the petri dish using a pipette and transfer it to a 50 ml conical tube.

 

NOTE: check the tissue to make sure that almost all crypts have been removed from the mucosa.
11. Filter the crypt suspension through a 150 µm nylon mesh 2 times.

 

NOTE: check the flow-through for crypt enrichment under a microscope.
12. Centrifuge the crypt suspension 5 min at 50 xg, 4°C. Discard the supernatant.
13. Resuspend the pellet in 1 ml ice-cold chelation buffer. Transfer the crypt suspension to a 1.5 ml microfuge tube.
14. Centrifuge the crypt fraction for 10 min at 150 x g, 4°C. Remove the supernatant.
15. Use crypts for subsequent culture.

4. Crypt Culture in Basement Membrane Matrix

1. Using pre-chilled pipet tips, resuspend the crypt pellet (from step 2.18 or 3.15) in basement membrane matrix (200 to 500 crypts/50 µl
basement membrane matrix).

2. Apply 50 µl of crypt suspension in basement membrane matrix per well on the pre-warmed plate. Slowly eject the basement membrane
matrix in the center of the well.

3. Place the 24-well plate in a 37°C, 5% CO2 incubator for 30 min to allow a complete polymerization of the basement membrane matrix.
4. Overlay the basement membrane matrix with 500 µl of complete human minigut medium supplemented with 2.5 µM CHIR99021 (1:4,000

dilution of 10 mM stock) and 2.5 µM Thiazovivin (1:4,000 dilution of 10 mM stock).
5. Incubate the plate in a 37°C, 5% CO2 incubator.
6. Replace the medium with fresh complete human minigut medium every 2 days.

5. Passaging of Cultured Enteroids and Colonoids.

NOTE: Passage Enteroids and Colonoids every 7 to 10 days after initial plating. Generally, split one well into 3 to 4 wells.

1. Prepare all the reagents before the beginning of the experiment. Thaw the basement membrane matrix on ice and pre-incubate a 24-well
plate in a CO2 incubator at 37°C.

2. Remove the media using sterile tips and overlay with 1 ml of ice-cold DPBS.
3. Pipette back and forth with a 1,000 µl tip. Transfer the solution in a new 15 ml conical tube.
4. Add 2 ml of human minigut medium supplemented with 5% FBS per 1 ml of medium.
5. Centrifuge the solution for 5 min at 50 x g, 4°C. Discard the supernatant.
6. Resuspend the pellet with 2 ml of cell dissociation enzyme supplemented with 10 µM Y-27632 (1:1,000 dilution of 10 mM stock). Incubate for

5 min at 37°C in a water-bath.
7. Dissociate the cell clumps using a 3 ml Luer-Lock syringe equipped with a 18-G fill/blunt needle. Gently pipette the solution back and forth

using the syringe 10 times.
8. Centrifuge the suspension for 5 min at 500 x g, 4°C. Discard the supernatant.
9. Using pre-chilled pipet tips, resuspend the cell pellet in basement membrane matrix.
10. Apply 50 µl of crypt suspension in basement membrane matrix per well on the pre-warmed plate. Slowly eject the basement membrane

matrix in the center of the well.
11. Place the 24-well plate in a 37°C, 5% CO2 incubator for 20 min to allow a complete polymerization of the basement membrane matrix.
12. Overlay the basement membrane matrix with 500 µl of complete human minigut medium supplemented with 10 µM Y-27632 (1:1,000 dilution

of 10 mM stock).
13. Incubate the plate in a 37°C, 5% CO2 incubator.
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14. After 2 days, replace the medium with fresh complete human minigut medium supplemented with 10 µM Y-27632 (1:1,000 dilution of 10 mM
stock). Thereafter, replace the medium with fresh, complete human minigut medium every other day.

6. Freezing of Cultured Enteroids and Colonoids

NOTE: Usually freeze one well into 2-3 cryovials.

1. Repeat steps 5.1 to 5.8.
2. Resuspend the pellet with cold freezing medium. Transfer 1 ml of freezing solution into a labeled cryovial. Place the cryovial in a freezing

container containing 500 ml of isopropyl alcohol.
3. Transfer the freezing container to a 80°C freezer for 24 h, then transfer cryovial to liquid nitrogen storage.

 

NOTE: Store Enteroids and Colonoids for up to 1 year.

Representative Results

Figure 2D shows a typical example of freshly isolated crypts from whole tissue (Figure 2D). The number of crypts isolated from a biopsy is lower
than in whole tissue. Using standard capacity biopsy forceps with needle, we usually perform two biopsy bites on a single pass. Each biopsy bite
results in a 10 mm2 surface with an average of 50 to 100 crypts per biopsy (Figure 2F).

After culture in basement membrane matrix, the crypts round up to form enterospheres for small intestine and colonospheres for colon. The crypt
budding usually occurs within 5 to 6 days, after seeding. However it is not unusual to see either enteroids (enteroids) or colonoids (colonoids)
forming spheres in the basement membrane matrix (Figure 3A-C; Movie 1). The passaging can be done after 7 days, depending on the size
of the enteroids. The enteroids or colonoids established from biopsies undergo the same development in culture. However, as the crypt density
at seeding is lower, the passaging is usually done after 10 to 12 days in culture (Figure 4a,b). Enteroids and colonoids cultures expand in a
reproducible manner.

Both enteroids and colonoids present a luminal side and are lined with an epithelium (Figure 5A, B). Proliferative cells can be observed within
the enteroids and are located within the bud tips (Figure 5C, D). Confocal imaging of enteroids stained with E-cadherin (Ecad) shows the
epithelial cells (Figure 5E).

Both enteroids and colonoids can be established from tissue obtained from patients with genetic/congenital disorders. Figure 6 shows
representative enteroids growing from a patient with cystic fibrosis (Figure 6A) and a tufting enteropathy due to a congenital mutation in the
epithelial cell adhesion molecule gene (EpCAM) (Figure 6B). Beside the genetic defect, the enteroids do not exhibit differences in basal
condition.

 

Figure 1. Workflow of crypts dissociation and generation of human enteroids and colonoids in culture. Crypts (from human small
intestine or colon) are isolated by EDTA chelation. Cultured crypts form enteroids for the small intestine and colonoids for the colon.
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Figure 2. Dissection process for the crypt isolation. (A) The small intestine specimen is stretched and pinned flat into a silicone-coated Petri
dish. (B) The mucosa is separated from the underlying submucosa. (C) The dissected mucosa is stretched and pinned flat into a silicone-coated
Petri dish. (D) After EDTA chelation, the crypts are isolated from the tissue. (E) One biopsy is stretched and pinned flat into a silicone-coated
Petri dish. (F) After EDTA chelation, crypts are isolated from the biopsy.
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Figure 3. Crypt culture and human enteroid and colonoid generation from whole tissue. (A) Jejunal crypts plated in basement membrane
matrix after isolation. The crypts are closing up after 3 to 4 hr and start to balloon up to form enterospheres beyond this time. At 7 days, the
jejunal enteroids are formed. (B) After isolation and culture, ileal crypts behave like the jejunal crypts and form ileal enteroids. (C) Colonic crypts
are plated in basement membrane matrix after isolation. The crypts close and form colonoids after 7 days (Scale bars: 100 µm).
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Figure 4. Crypt culture and human enteroid and colonoid generation from biopsy. (A) Duodenal crypts plated in basement membrane
matrix after isolation. The crypts are closing up after 3 to 4 hr and start to balloon up beyond this time to form enterospheres. At 7 days, the
enteroids are formed. (B) After isolation and culture, colonic crypts are plated in basement membrane matrix. The crypts close up to form
colonospheres then colonoids after 7 days (Scale bars: 100 µm).
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Figure 5. Intestinal lineages of the human enteroids. (A) Human enteroid after 6 days in culture. (B) Hematoxylin-eosin sections of the
enteroids in (A) demonstrate the epithelial lining (Scale bars: 100 µm). (C-D) Confocal imaging of enteroids after EdU staining (magenta) shows
the presence of proliferative cells. (E) Confocal imaging of enteroids demonstrates the presence of: E-cadherin for epithelial cells (ECAD, green)
(Scale bar: 50 µm).
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Figure 6. Crypt culture and human enteroid generation from diseased tissue. (A) Enteroids established from a cystic fibrosis specimen. (B)
Enteroids established from a congenital tufting enteropathy specimen (Scale bars: 100 µm).

Movie 1. Enterosphere forming human enteroid in culture. 32 hr time-lapse movie shows an enterosphere established from human small
intestine retracting to form an enteroid in culture. Please click here to view this video.

Name of Reagent Company Catalog Number Solvent Stock
Concentration

Final
Concentration

Comment

Dulbecco’s
Phosphate buffered
saline Ca2+, Mg2+

free (DPBS)

Life technologies;
Gibco

14190-144 - - 1x

Ethylenediamine
 

tetraacetic acid
(EDTA)

Sigma-Aldrich 431788 Ultrapure dH2O 0.5 M 2 mM

Sorbitol Fischer Scientific BP439-500 DPBS Powder 2%

Sucrose Fischer Scientific BP220-1 DPBS Powder 1%

Bovine serum
albumin (BSA)
Fraction V

Fischer Scientific BP1600-100 DPBS Powder 1%

Gzntamycin/
Amphotericin B
solution

Life technologies;
Gibco

R-015-10 - 500x 1x

Wnt-3A
conditionned
medium

in house - - - -

Advanced DMEM/
F12

Life technologies;
Gibco

12634-028 - - -
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HEPES 1M Life technologies;
Gibco

15630-080 - 1 M 10 mM

GlutaMAX
(glutamine)

Life technologies;
Gibco

35050-061 - 100X 1X

Penicillin-
Streptomycin
(10,000 U/mL)

Life technologies;
Gibco

15140-148 - 100X 1X

N2 Supplement Life technologies;
Gibco

17502-048 - 100X 1X

B27 Supplement Life technologies;
Gibco

17504-044 - 50X 1X

N-Acetylcysteine Sigma-Aldrich A9165-5G DPBS 1 M 1 mM

Nicotidamide Sigma-Aldrich N0636 DPBS 1 M 10 mM

Matrigel, GFR,
Phenol free
(basement
membrane matrix)

Corning 356231 - - - REQUIRED

human
recombinant
Noggin

R&D 6057-NG/CF DPBS 100 μg /ml 100 ng/ml

human
recombinant R-
Spondin

Preprotech 120-38 DPBS 1 mg/ml 1 μg/ml

human
recombinant EGF

Sigma-Aldrich E9644-.2MG DBPS 500 μg/ml 50 ng/ml

Other suppliers:
R&D; Anaspec and
Preprotech

Y-27632 Sigma-Aldrich Y0503-1MG DPBS 10 mM 10 μM

A-83-01 Tocris 2939 DMSO 500 μM 500 nM

SB202190 Sigma-Aldrich S7067-5MG DMSO 30 mM 10 μM

human [Leu]15-
Gastrin 1

Sigma-Aldrich G9145-.1MG DPBS 100 μM 10 nM

CHIR99021 Stemgent 04-0004 DMSO 10 mM 2.5 μM

Thiazovivin Stemgent 04-0017 DMSO 10 mM 2.5 μM

TrypLE Express
Enzyme (1X),
phenol red (cell
dissociation
enzyme)

Life technologies;
Gibco

12605-010 - - - For passaging

Fetal Bovine
Serum

Life technologies;
Gibco

10082-147 - - - For passaging

CTS Synth-a-
Freeze Medium
(freezing medium)

Life technologies;
Gibco

A13713-01 - - - For freezing

L Wnt-3A cell line ATCC CRL-2647 - - - Wnt-3A
conditionned media
production

Renilla luciferase
assay

Promega E2710 - - - Wnt-3A
conditionned media
activity

human
recombinant
Wnt-3A

R&D 5036-WN/CF DPBS 100 μg /ml 100 ng/ml Wnt-3A
conditionned media
activity

HEK293 TOPflash
cell line

- - - - - Wnt-3A
conditionned media
activity; Gift from
Hans Clevers
laboratory
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Table 1. Detailed reagent list with preferred manufacturer and catalog number.

Equipment Consumable Tools

Laminar flow hood 15- and 50 ml conical tubes Dumont #5 standard forceps (F.S.T.;
#11251-20)

CO2 Incubator Microfuge tubes Dumont #7, curved fine forceps (F.S.T.;
#11274-20)

Stereo-microscope 24-well plates Fine scissors (F.S.T.; #14060-09)

Centrifuge 0.22 μm filters (Sartorius) Vannas spring scissors (F.S.T.; #15018-10)

Orbital shaker Serological pipettes 0.2 mm diameter minutien pins (F.S.T.;
#26002-20)

Freezing container (Nalgene) Micropipette tips 0.1 mm diameter minutien pins (F.S.T.;
#26002-10)

Sylgard 184 Silicone (Dow Corning) 150 μm mesh openings, nylon screening
(Dynamic Aqua-supply)

Glass Petri dish 5 ml round-bottom polypropylene tubes
(Falcon)

Serological pipettor 18G blunt fill needle (BD)

Micropipette 3 ml lsyringes with Luer-Lock tips (BD)

Cryovials

Table 2. Detailed consumables, tools, and equipment needed for the crypt isolation and culture.

Discussion

This method provides a complete system reproducing intestinal epithelial lineages and epithelial dynamics which constitute a useful tool to study
intestinal epithelial biology. The method presented herein was adapted from the original murine study by Sato and Clevers22 that efficiently
results in human enteroids and colonoids. Here, we manually picked up the crypts by microdissection to avoid any cellular contaminants. This
method allows a direct visualization of the crypts and leads to consistency overtime compared to the original crypt collection by “shaking”. Other
groups developed similar technics using slightly different approaches especially replacing the chelation by EDTA with collagenase25. Besides the
differences in crypt collection, those technics use a defined media that is required to grow the human enteroids in culture22. To increase growth
efficiency at crypt seeding, we add a GSK3 inhibitor (CHIR99021) for the first two days 12.

The handling of the tissue or biopsies is important and the crypt isolation should be performed as soon as the tissue arrives in the lab. However,
delayed crypt isolation and culture could be performed up to 24 hr after tissue collection (data not shown) as previously described for murine
tissue26. The intestinal tissue should be placed in a conical tube completely filled with DPBS to avoid tissue disruption and should be maintained
at 4°C. The delayed preparation allows for tissue shipping but temperature variation should be avoided during transport. The overall time
needed for the initial crypt plating is approximately 2 hr with 15 to 30 min to process the tissue and 1 to 2 hr to isolate and plate the crypt. The
microdissection of the tissue is a critical determinant and predicate of a clean crypt preparation. However, the crypt release by hand-shaking as
described in various protocols is possible22,23.

Despite the similarities with the murine enteroid (enteroids) system, the human enteroids require specific molecules to enhance and sustain
their growth over time. The growth factors, Egf, Noggin, R-spondin are used similarly to the murine epithelial organoids. However, the use
of Wnt-3A is critical. We noted that the formation as well as the growth efficiency is greater using a Wnt-3A conditioned medium than the
human recombinant protein. Concomitantly, we demonstrated improved culture conditions using an inhibitor of the glycogen synthase kinase 3
(CHIR99021)12. Recombinant growth factors could be replaced by Wnt-3A, R-spondin, and Noggin conditioned-media. A Wnt-3A-expressing
L-cell line is commercially available (ATCC). Other groups have developed R-spondin 1–23,27, Noggin-19 , and Wnt-3A/R-spondin3/Noggin–28

expressing cell lines. Two small molecule inhibitors are used in the culture media and are necessary for the maintenance of the culture29.
A-83-01 is a selective inhibitor of transforming growth factor β and Activin/Nodal receptors (activin-like kinase 4, 5, 7) and SB202190 is a p38
mitogen-activated protein kinase inhibitor (MAPK). Both inhibitors have been used respectively to sustain human induced pluripotent stem cells
self-renewal and to establish human naïve pluripotent stem cells30-32. Also, nicotinamide, a precursor of nicotinamide adenine dinucleotide, is
required to maintain enteroids and colonoids expansion in a long-term manner22,29.

The EDTA chelation is an important step as it determines the yield from the crypt preparation. We have been successful with 2 mM EDTA
treatment. However, EDTA concentration can be modified from 2 mM to 15 mM regarding the type of tissue. In that case, time of incubation
has to be empirically determined. After the initial plating, the crypt will round-up and eventually form enteroids. However, the enteroids or
colonoids often demonstrate a “stem” phenotype by forming spheres with little to no differentiated cells. In that case, differentiation can be
initiated by withdrawing Wnt-3A, nicotinamide and the p38 MAPK inhibitor. The use of Notch inhibitor such as DAPT or DBZ helps enhancing the
differentiation within the enteroids22.

This model recapitulates the intestinal physiology with continual crypt-budding events arising from a stem cell compartment as well as villus-like
epithelial domains containing both absorptive and secretory differentiated lineages. Interestingly, this system does not contain any mesenchymal
cells and uses specific media conditions to meet the niche signal requirements.
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Like the murine model, human enteroids can be generated from isolated intestinal epithelial cells to test the capacity of those cells to function
as a stem cell. Several studies have used cluster of differentiation markers (CD44, CD24 or CD166) and EPHB2 positive cells to enrich for
cells with stem properties12,23,33. Together, these studies demonstrate the utility of human enteroids cultures for testing the stemness. Other
investigators are using this model to investigate intestinal diseases such as infectious diarrheal diseases, cystic fibrosis, or colorectal cancers
22,34-37. These studies demonstrate that human enteroids constitute a reliable human disease model with a possibility to move towards a
personalized screening. Human enteroids can be genetically modified using DNA transfection or infection with viral particles38. This provides
a powerful tool to study gene-specific functions within the human epithelial organoids or correct genetic mutations. Recently, Schwank and
colleagues demonstrated the possibility to edit the genome with the CRISPR/Cas9 system and correct the mutation on the CFTR gene causing a
cystic fibrosis24. Human enteroids constitute a valuable system to study intestinal stem-cell and epithelial mucosal biology and serve as a novel
experimental system to study both normal and abnormal gastrointestinal physiology.
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