Hemolytic Anemia Panel by NGS

ABCG5	ABCG8	AK1	ALAS2
ALDOA	ANK1	ATP11C	C15orf41
CDAN1	COL4A1	EPB41	EPB42
G6PD	GATA1	GCLC	GPI
GPX1	GSR	GSS	GYPC
HK1	KCNN4	KIF23	KLF1
LPIN2	NT5C3A	PFKM	PGK1
PIEZO1	PKLR	RHAG	SEC23B
SLC2A1 (GLUT1)	SLC4A1	SPTA1	SPTB
TPI1	XK		

Description:

This panel is specifically designed to diagnose the most common genetic causes of hemolytic anemia. Hereditary hemolytic anemia (HHA) is caused by defects in the red blood cell membrane proteins, deficiencies in red blood cell enzymes, or hemoglobin disorders. Congenital dyserythropoietic anemias (CDAs) are caused by ineffective erythropoiesis and share some clinical characteristics with HHA. Hemolytic anemias are caused by variants in many different genes, and may be inherited in an autosomal dominant, autosomal recessive, or X- linked manner.

Tests Offered:

- Hemolytic Anemia 38 gene panel
- CDA 8 gene panel
- RBC Membrane Disorders 16 gene panel
- RBC Enzymopathies 14 gene panel
- Sanger sequencing of any gene on panel

Indications:

Hemolytic Anemia Panel by NGS

• Confirmation of genetic diagnosis in a patient with a clinical diagnosis of hemolytic anemia or associated syndrome

• Carrier or presymptomaic diagnosis identification in individuals with a family history of hemolytic anemia of unknown genetic basis.

Gene Specific or Sub-panel Sequencing:

• Confirmation of genetic diagnosis in a patient with hemolytic anemia and in whom a specific genetic diagnosis is suspected.

Variant Specific Analysis:

- Presymptomatic testing of at-risk siblings and parents for medical management and prior to bone marrow donation
- Carrier identification in individuals in whom specific variant(s) have been identified in the proband with hemolytic anemia
- Prenatal diagnosis of an at-risk fetus, after confirmation of variant(s) in the parent(s) and by prior arrangement only.

Congenital Dyserythropoietic Anemias

Congenital dyserythropoietic anemias (CDAs) are characterized by ineffective red blood cell production with distinct morphologic features in late bone marrow erythroblasts (dyserythropoiesis).

Symptoms of CDA include jaundice, anemia, splenomegaly, gallstones and secondary hemochromatosis. The peripheral blood smear reveals aniso-poikilocytosis and basophilic stippling.

Condition	Gene(s)	Inheritance
Sideroblastic anemia	ALAS2	XR
CDA1	CDAN1, C15ORF41	AR
CDA2	SEC23B	AR
CDA3	KIF23	AD
CDA4	KLF1	AD
GATA1-related cytopenia	GATA1	XR
Majeed syndrome	LPIN2	AR

Genetics and Genomics Diagnostic Laboratory CLIA#: 36D0656333 Phone: (513) 636-4474 Fax: (513) 636-4373 Email: LabGeneticCounselors@cchmc.org www.cincinnatichildrens.org/genetics

RBC Membrane Disorders

RBC membrane disorders are caused by quantitative or qualitative defects of the red cell cytoskeleton proteins and include hereditary spherocytosis (HS), elliptocytosis/ pyropoikilocytosis (HE/HPP), and stomatocytosis (HSt). Symptoms can range from asymptomatic cases incidentally diagnosed after blood tests to severe cases presenting with hydrops fetalis which would require in utero blood transfusions.

Condition	Gene(s)	Inheritance	Associated Features
GLUT1 deficiency	GLUT1	AD	Seizures, intellectual disability, ataxia
Hemolytic anemia	ATP11C	XR	
Hereditary spherocytosis	ANK1, SLC4A1, SPTB	AD	
Hereditary spherocytosis	ANK1, SPTA1, EPB42	AR	
Hereditary elliptocytosis	GYPC , SPTA, SPTB, EPB41	AD	
Hereditary pyropoikilocytosis	SPTA, SPTB, EPB41	AR	
Hereditary stomatocytosis	KCNN4, PIEZO1, RHAG	AD	
Hereditary stomatocytosis	ABCG5, ABCG8	AR	Severe hypercholesterolemia and macrothrombocytopenia
McLeod Neuroacanthocytosis syndrome	ХК	XR	Seizures, progressive chorea, myopathy and cardiac arrythmia
Porencephaly	COL4A1	AD	
Rh-null phenotype	RHAG	AR	Rh null blood group phenotype

RBC Enzymopathies

RBC Enzymopathies are caused by deficiencies in enzymes involved in glycolysis,

the pentose phosphate pathway, or nucleotide clearance within RBCs.

Condition	Gene(s)	Inheritance	Associated Features
Adenylate kinase deficiency	AK1, ALDOA	AR	Exertional myopathy
G6PD deficiency	G6PD	XR	
Gamma-glutamylcysteine synthetase deficiency	GCLC	AR	
Glucose phosphate isomerase deficiency	GPI	AR	
Glutathione peroxidase deficiency	GPX1	AR	
Glutathione reductase deficiency	GSR	AR	
Glutathione synthetase deficiency	GSS	AR	5-oxoprolinuria, metabolic acidosis, CNS damage
Glycogen storage disease VII	PFKM	AR	Exertional myopathy
Hexokinase deficiency	НК1	AR	Neuropathy, Russe type
Phosphoglycerate kinase 1 deficiency	PGK1	XR	Myopathy, neurological involvement
Pyruvate kinase deficiency	PKLR	AR	
Triosephosphate isomerase deficiency	TPI1	AR	Myopathy
UMPH1 deficiency	NT5C3A	AR	Learning difficulties

Specimen:

At least 3 mLs whole blood in a lavender top (EDTA) tube.

Note: For post-transplant patients, we accept pretransplant samples or post-transplant skin fibroblasts ONLY (blood, saliva, and cytobrushes are not accepted). Culturing of skin fibroblasts is done at an additional charge. **We are unable to accept blood samples that are collected within two (2) weeks of a <u>transfusion</u>.**

Testing Methodology:

Hemolytic Anemia Panel by NGS: This test is performed by enrichment of the coding exons, flanking intronic and untranslated regions (5' and 3'), as well as known pathogenic variants (HGMD 2017.3) in the promoter and deep intronic regions of the genes specified above using oligonucleotide probe hybridization followed by next-generation sequencing with >50X coverage at every target base. All pathogenic and novel variants, as well as variants of unknown (indeterminate) significance, as determined bioinformatically, are confirmed by Sanger sequencing.

Gene Specific Sequencing/ Variant Specific Analysis: Sanger sequencing following PCR amplification of the specified coding and exon/intron boundaries of the specified gene.

Sensitivities:

Clinical Sensitivity: The next generation sequencing panel detects 70-99% of the reported variants in these genes using this testing methodology. Many genes on this panel result in rare or overlapping phenotypes, and the clinical sensitivity of gene sequencing has not been determined. The clinical sensitivity of single gene testing is dependent on the test ordered. Large exonic deletions, duplications, or insertions have been reported in several of these genes. Deletion/duplication analysis may be indicated as a follow-up test in patients with a single variant in one of these genes, or in patients with normal Hemolytic Anemia Panel analysis.

Analytical Sensitivity: The sensitivity of DNA sequencing is over 98% for the detection of nucleotide base changes, small deletions and insertions in the regions analyzed.

Limitations: Variants in regulatory regions and nonreported variants in untranslated regions are not detected by this test. Large deletions involving entire single exons or multiple exons, large insertions and other complex genetic events have been reported in many of these genes and will not be identified using this test methodology. Rare primer site variants may lead to erroneous results.

Note: Single gene sequencing is available for all genes on the panel. Deletion/duplication analysis is available for all genes listed for an additional charge.

Turn-Around Time:

42 days for the next generation sequencing panel and up to 42 days for single gene sequencing.

CPT Codes:

- Hemolytic Anemia 38 gene panel: 81443
- **RBC Membrane Disorders 16 gene panel:** 81408
- RBC Enzymopathies 14 gene panel: 81479x3
- **CDA 8 gene panel:** 81479x3
- Single gene testing of any gene on panel (except *COL4A1, SLC2A1 (GLUT1)):* 81479
- Single gene testing of COL4A1: 81408
- Single gene testing of SLC2A1 (GLUT1): 81405
- **Deletion/Duplication analysis:** call for information

Please call 1-866-450-4198 for current pricing, insurance preauthorization or with any billing questions.

Results:

Results will be reported to the referring physician or health care provider as specified on the requisition form.

Shipping Instructions:

Please enclose **test requisition** with sample. **All information must be completed before sample can be processed.**

Place samples in styrofoam mailer and ship at room temperature by overnight Federal Express to arrive Monday through Saturday.

Ship to:

Genetics and Genomics Diagnostic Laboratory 3333 Burnet Avenue NRB 1042 Cincinnati, OH 45229 513-636-4474

References:

Babbs, C., Roberts, N. A., Sanchez-Pulido, L., McGowan, S. J., Ahmed, M. R., Brown, J. M., ... Buckle, V. J. (2013). Homozygous mutations in a predicted endonuclease are a novel cause of congenital dyserythropoietic anemia type I. Haematologica, 98(9), 1383–1387. doi:10.3324/haematol.2013.089490.

Ciovacco, Wendy A, Wendy H Raskind, and Melissa A Kacena. "Human Phenotypes Associated with GATA-1 Mutations." Gene 427 (1–2): 1–6.

Da Costa, L., J. Galimand, O. Fenneteau and N. Mohandas (2013). "Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders." Blood Rev.

Iolascon, A., H. Heimpel, A. Wahlin, and H. Tamary (2013). "Congenital dyserythropoietic anemias: molecular insights and diagnostic approach." Blood 122(13): 2162-2166.

Jacobasch, G. and S. M. Rapoport (1996). "Hemolytic anemias due to erythrocyte enzyme deficiencies." Mol Aspects Med 17(2): 143-170.

Jung, H. H., A. Danek, R. H. Walker, B. M. Frey and C. Gassner (1993). McLeod Neuroacanthocytosis Syndrome. GeneReviews. R. A. Pagon, M. P. Adam, T. D. Bird et al. Seattle WA, University of Washington, Seattle.

Kacena, Melissa A, Stella T Chou, Mitchell J Weiss, and Wendy H Raskind. "GATA1-Related X-Linked Cytopenia." In GeneReviews(®), edited by Roberta A Pagon, Margaret P Adam, Thomas D Bird, Cynthia R Dolan, Chin-To Fong, Richard JH Smith, and Karen Stephens. Seattle (WA): University of Washington, Seattle, 1993.

Liljeholm, Maria, Andrew F Irvine, Ann-Louise Vikberg, Anna Norberg, Stacy Month, Herbert Sandström, Anders Wahlin, Masanori Mishima, and Irina Golovleva. "Congenital Dyserythropoietic Anemia Type III (CDA III) Is Caused by a Mutation in Kinesin Family Member, KIF23." Blood 121 (23): 4791–99.

Nichols, K E, J D Crispino, M Poncz, J G White, S H Orkin, J M Maris, and M J Weiss. "Familial Dyserythropoietic Anaemia and Thrombocytopenia due to an Inherited Mutation in GATA1." Nature Genetics 24(3): 266–70.

Noris, Patrizia, Alessandro Pecci, Filomena Di Bari, Maria Teresa Di Stazio, Michele Di Pumpo, Iride F Ceresa, Nicoletta Arezzi, Chiara Ambaglio, Anna Savoia, and Carlo L Balduini. "Application of a Diagnostic Algorithm for Inherited Thrombocytopenias to 46 Consecutive Patients." Haematologica 89 (10): 1219–25.

Sandström, H, and A Wahlin. "Congenital Dyserythropoietic Anemia Type III." Haematologica 85 (7): 753–57.

Tamary, H. and O. Dgany (1993). Congenital Dyserythropoietic Anemia Type I. GeneReviews. R. A. Pagon, M. P. Adam, T. D. Bird et al. Seattle WA, University of Washington, Seattle.

Wang, D., J. M. Pascual and D. De Vivo (1993). Glucose Transporter

Type 1 Deficiency Syndrome. GeneReviews. R. A. Pagon, M. P. Adam, T. D. Bird et al. Seattle WA, University of Washington, Seattle.

Wang, Z., Cao, L., Su, Y., Wang, G., Wang, R., Yu, Z., ... Ruan, C. (2014). Specific macrothrombocytopenia/hemolytic anemia associated with sitosterolemia. American Journal of Hematology, 89(3), 320–324. doi:10.1002/ajh.23619.