Section of Neonatology, Perinatal and Pulmonary Biology

Division Details

RESEARCH AND TRAINING DETAILS

<table>
<thead>
<tr>
<th>Category</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty</td>
<td>56</td>
</tr>
<tr>
<td>Joint Appointment Faculty</td>
<td>1</td>
</tr>
<tr>
<td>Research Fellows and Post Docs</td>
<td>13</td>
</tr>
<tr>
<td>Research Graduate Students</td>
<td>31</td>
</tr>
<tr>
<td>Total Annual Grant Award Dollars</td>
<td>$12,629,518</td>
</tr>
<tr>
<td>Total Annual Industry Award Dollars</td>
<td>$575,404</td>
</tr>
<tr>
<td>Total Publications</td>
<td>143</td>
</tr>
</tbody>
</table>

CLINICAL ACTIVITIES AND TRAINING

<table>
<thead>
<tr>
<th>Category</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staff Physicians</td>
<td>34</td>
</tr>
<tr>
<td>Clinical Fellows</td>
<td>15</td>
</tr>
</tbody>
</table>

Research Highlights

SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis

A major challenge in developmental biology is to understand the genetic and cellular processes/programs driving organ formation, and differentiation of the diverse cell types that comprise the embryo. While recent studies using single cell transcriptome analysis illustrate the power to measure and understand cellular heterogeneity in complex biological systems, processing large amounts of RNA-seq data from heterogeneous cell populations creates the need for readily accessible tools for the analysis of single-cell RNA-seq (scRNA-seq) profiles. The present study presents a generally applicable analytic pipeline (SINCERA: a computational pipeline for Single CelII RNA-seq profiling Analysis) for processing scRNA-seq data from a whole organ or sorted cells. The pipeline supports the analysis for: 1) the distinction and identification of major cell types; 2) the identification of cell type specific gene signatures; and 3) the determination of driving forces of given cell types. We applied this pipeline to the RNA-seq analysis of single cells isolated from embryonic mouse lung at E16.5. Through the pipeline analysis, we distinguished major cell types of fetal mouse lung, including epithelial, endothelial, smooth muscle, pericyte, and fibroblast-like cell types, and identified cell type specific gene signatures, bioprocesses, and key regulators. Implemented in R, and licensed under the GNU General Public License v3, SINCERA is freely available from Cincinnati Children's PBGE website.
Metagenomic Sequencing with Strain-Level Resolution Implicates Uropathogenic E. coli in Necrotizing Enterocolitis and Mortality in Preterm Infants

Necrotizing enterocolitis (NEC) affects approximately 10% of extremely preterm infants with high fatality. There is an implication of inappropriate bacterial colonization with Enterobacteriaceae, but there has been no specific pathogen identified. We identify uropathogenic E. coli (UPEC) colonization as a significant risk factor for the development of NEC and subsequent mortality. We describe a large-scale deep shotgun metagenomic sequence analysis of the early intestinal microbiome of 144 preterm and 22 term infants. Using a pan-genomic approach to functionally subtype the E. coli, we identify genes associated with NEC and mortality that indicate colonization by UPEC. Metagenomic multilocus sequence typing analysis further defined NEC-associated strains as sequence types often associated with urinary tract infections, including ST69, ST73, ST95, ST127, ST131, and ST144. Although other factors associated with prematurity may also contribute, this report suggests a link between UPEC and NEC, and indicates the need for further attention to these sequence types as potential causal agents.

Functional and Structural Connectivity of the Visual System in Infants with Perinatal Brain Injury

In this study, we evaluated term and preterm infants with perinatal brain injury and term controls in the 1st 8 weeks of life using task-based functional MRI, functional connectivity during a visual task, and structural connectivity using diffusion tensor imaging. We found that infants with brain injury had reduced functional and structural connectivity compared to term control infants. Specifically, infants with brain injury had reduced activation in the expected area of the occipital cortex, weaker connectivity between visual areas and other areas of the brain during the visual task, and reduced fractional anisotropy (a measure of white matter integrity) in white matter tracts projecting to visual regions. Our next steps will be to correlate these early neuroimaging findings with later visual outcomes in this cohort.

Significant Publications

Multiple signaling pathways, structural proteins, and transcription factors are all involved in the regulation of endothelial barrier function. The forkhead protein FOXF1 is a key transcriptional regulator of embryonic lung development, and we used a conditional knockout approach to examine the role of FOXF1 in adult lung homeostasis, injury, and repair. Tamoxifen-regulated deletion of both Foxf1 alleles in endothelial cells of adult mice (Pdgfb-iCreER/Foxf1(−/−)) caused lung inflammation and edema, leading to respiratory insufficiency and death. Deletion of a single Foxf1 allele made heterozygous Pdgfb-iCreER/Foxf1(+/-)-mice more susceptible to acute lung injury. Findings showed decreased FOXF1 abundance in pulmonary endothelial cells of human patients with acute lung injury. Gene expression analysis of pulmonary endothelial cells with homozygous FOXF1 deletion indicated reduced expression of genes critical for maintenance and regulation of adherens junctions. FOXF1 knockdown in vitro and in vivo disrupted adherens junctions, enhanced lung endothelial permeability, and increased the abundance of the mRNA and protein for sphingosine 1-phosphate receptor 1 (S1PR1), a key regulator of endothelial barrier function. Chromatin immunoprecipitation and luciferase reporter assays demonstrated that FOXF1 directly bound to and induced the transcriptional activity of the S1pr1 promoter. Pharmacological administration of S1P to injured Pdgfb-iCreER/Foxf1(+/−)-mice restored endothelial barrier function, decreased lung edema, and improved survival. Thus, FOXF1 promotes normal lung homeostasis and repair, in part, by enhancing endothelial barrier function through activation of the S1P/S1PR1 signaling pathway.

Observational epidemiological studies indicate that maternal height is often associated with gestational age at birth and fetal growth measures (i.e., shorter mothers deliver infants at earlier gestational ages with lower birth weight and birth length). To explain these associations, postulating of different mechanisms has occurred. This study aimed to investigate the casual relationships behind the strong association of maternal height with fetal growth measures (i.e., birth length and birth weight) and gestational age by a Mendelian randomization approach. Our results demonstrate that the observed association between maternal height and fetal
growth measures (i.e., birth length and birth weight) is mainly defined by fetal genetics. In contrast, the association between maternal height and gestational age is more likely to be causal. In addition, our approach that utilizes the genetic score derived from the nontransmitted maternal haplotype as a genetic instrument is a novel extension to the Mendelian randomization methodology in casual inference between parental phenotype (or exposure) and outcomes in offspring.

Division Publications

27. Fritz JM, Yang L, Weaver TE. Lipid Transport and Epithelial Barrier Integrity. Oncotarget. 2015; 6:20744-5.

Grants, Contracts, and Industry Agreements

Annual Grant Award Dollars

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Title</th>
<th>Sponsor</th>
<th>ID</th>
<th>Dates</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>James Patrick Bridges, PHD</td>
<td>Role of GPR116 in the Regulation of Alveolar Surfactant Pool Size</td>
<td>American Heart Association</td>
<td>13SDG17090028</td>
<td>7/1/2013 - 6/30/2017</td>
<td>$77,000</td>
</tr>
<tr>
<td>Hitesh Deshmukh, MD-PHD</td>
<td>Role of Commensal Bacteria in Regulating Neutrophil-mediATED Host Defense in Neonates</td>
<td>National Institutes of Health</td>
<td>K08 HD084686</td>
<td>8/1/2015 - 5/31/2019</td>
<td>$259,740</td>
</tr>
<tr>
<td>Neera Goyal, MD</td>
<td>Preventive Health Services and ED Utilization among At-Risk Infants</td>
<td>Health Resources & Services Admin</td>
<td>R40MC29447</td>
<td>4/1/2016 - 3/31/2017</td>
<td>$100,000</td>
</tr>
<tr>
<td>James M Greenberg, MD</td>
<td>Cradle Cincinnati</td>
<td>City of Cincinnati</td>
<td>5582015340</td>
<td>6/17/2015 - 10/31/2016</td>
<td>$250,000</td>
</tr>
<tr>
<td>James M Greenberg, MD</td>
<td>Healthy Start Cincinnati</td>
<td>Health Resources & Services Admin</td>
<td>H49MC27823</td>
<td>9/1/2014 - 5/31/2019</td>
<td>$674,337</td>
</tr>
<tr>
<td>Margaret K Hostetter, MD</td>
<td>Child Health Research Career</td>
<td>National Institutes of Health</td>
<td>K12 HD028827</td>
<td>12/1/2015 -</td>
<td>$364,467</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Funders</td>
<td>Grant Number</td>
<td>Dates</td>
<td>Amount</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Alan Hall Jobe, MD-PHD</td>
<td>Development Award (K12) Health</td>
<td>Bill & Melinda Gates Foundation</td>
<td>OPP1132910</td>
<td>10/26/2015 - 9/30/2017</td>
<td>$364,047</td>
</tr>
<tr>
<td>Alan Hall Jobe, MD-PHD</td>
<td>Antenatal Steroid Treatment Strategies for Low Resource Countries</td>
<td>National Institutes of Health</td>
<td>R01 HD072842</td>
<td>6/1/2016 - 5/31/2017</td>
<td>$282,783</td>
</tr>
<tr>
<td>Tatiana Viktorovna Kalin, MD-PHD</td>
<td>Transcriptional Regulation of Antenatal Steroid Treatment Strategies for Low Resource Countries</td>
<td>National Institutes of Health</td>
<td>R56 HL126660</td>
<td>9/8/2015 - 8/31/2016</td>
<td>$390,000</td>
</tr>
<tr>
<td>Tatiana Viktorovna Kalin, MD-PHD</td>
<td>Transcriptional Regulation of Antenatal Steroid Treatment Strategies for Low Resource Countries</td>
<td>American Cancer Society</td>
<td>RSG1332501</td>
<td>7/1/2013 - 6/30/2017</td>
<td>$180,000</td>
</tr>
<tr>
<td>Vladimir V Kalinichenko, MD-PHD</td>
<td>Fox1 Transcription Factor in Antenatal Steroid Treatment Strategies for Low Resource Countries</td>
<td>National Institutes of Health</td>
<td>R01 HL084151</td>
<td>5/8/2015 - 4/30/2019</td>
<td>$390,000</td>
</tr>
<tr>
<td>Vladimir V Kalinichenko, MD-PHD</td>
<td>Transcriptional Regulation of Antenatal Steroid Treatment Strategies for Low Resource Countries</td>
<td>National Institutes of Health</td>
<td>R01 HL123490</td>
<td>8/5/2014 - 6/30/2018</td>
<td>$384,150</td>
</tr>
<tr>
<td>Paul Kingma, MD-PHD</td>
<td>Intestinal Motility and Gastrochisis</td>
<td>The Gerber Foundation</td>
<td>1557-3464</td>
<td>7/1/2013 - 6/30/2017</td>
<td>$57,443</td>
</tr>
<tr>
<td>Timothy D LeCras, PHD</td>
<td>Identification of Biomarkers for Intestinal Motility and Gastrochisis</td>
<td>The Lymphatic Malformation Institute</td>
<td>LeCras, Tim, LMI</td>
<td>5/1/2015 - 4/30/2017</td>
<td>$149,725</td>
</tr>
<tr>
<td>Yutaka Maeda, PHD</td>
<td>Dissecting Tumor Heterogeneity in KRAS-Mutant Lung Cancer</td>
<td>American Lung Association</td>
<td>RG309608</td>
<td>8/1/2014 - 7/31/2016</td>
<td>$40,000</td>
</tr>
<tr>
<td>Eric Kirkendall, MD</td>
<td>Serial Neuroimaging in Infants with Necrotizing Enterocolitis</td>
<td>Cerebral Palsy International Research Fd</td>
<td>EH01400</td>
<td>1/1/2015 - 12/31/2015</td>
<td>$75,000</td>
</tr>
<tr>
<td>Ardythe Morrow, PHD</td>
<td>Ctr for Disease Control and Prevention</td>
<td>Ctr for Disease Control and Prevention</td>
<td>2002015M63224</td>
<td>7/14/2015 - 2/14/2017</td>
<td>$31,781</td>
</tr>
<tr>
<td>Ardythe Morrow, PHD</td>
<td>DNA Attenuates Inflammatory Responses through Altering RAGE Signaling</td>
<td>National Institutes of Health (The Research Institute at Nationwide Hosp)</td>
<td>R01 AT008680</td>
<td>7/1/2012 - 6/30/2016</td>
<td>$17,786</td>
</tr>
<tr>
<td>Louis Muglia</td>
<td>March of Dimes Prematurity Research Center Ohio Collaborative</td>
<td>March of Dimes</td>
<td>22-FY16-125</td>
<td>1/1/2016 - 12/31/2016</td>
<td>$2,000,000</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Funding Agency</td>
<td>Grant Number</td>
<td>Start Date</td>
<td>End Date</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>---------------------------------------</td>
<td>----------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Louis Muglia</td>
<td>Preventing Prematurity: Establishing a Network for Innovation and Discovery</td>
<td>Bill & Melinda Gates Foundation</td>
<td>OPP1151188</td>
<td>4/20/2016</td>
<td>12/31/2016</td>
</tr>
<tr>
<td>Louis Muglia; Claire A Chougnet, PHD</td>
<td>Maternal Temperament, Stress, and Inflammation in Preterm Birth</td>
<td>National Institutes of Health</td>
<td>R01 HD078127</td>
<td>9/1/2013</td>
<td>8/31/2017</td>
</tr>
<tr>
<td>Laurie A Nommsen-Rivers, PhD</td>
<td>Improving Lactation Success in Pre-diabetic Mothers</td>
<td>National Institutes of Health (University of Cincinnati)</td>
<td>K12 HD051953</td>
<td>7/1/2014</td>
<td>6/30/2016</td>
</tr>
<tr>
<td>Anne Karina Perl, PHD</td>
<td>Matrix Fibroblasts are required for Alveolar Homeostasis and regrowth</td>
<td>National Institutes of Health</td>
<td>R56 HL123969</td>
<td>9/8/2015</td>
<td>8/31/2016</td>
</tr>
<tr>
<td>Brenda Poindexter, MD-MS</td>
<td>Gastrin-Releasing Peptide and Bronchopulmonary Dysplasia</td>
<td>National Institutes of Health (Duke University)</td>
<td>R01 HL105702</td>
<td>10/1/2014</td>
<td>7/31/2016</td>
</tr>
<tr>
<td>Brenda Poindexter, MD-MS</td>
<td>NICHD Cooperative Multicenter Neonatal Research Network</td>
<td>National Institutes of Health</td>
<td>UG1HD027853</td>
<td>4/1/2016</td>
<td>3/31/2021</td>
</tr>
<tr>
<td>Debora Ines Sinner, PHD</td>
<td>Molecular Mechanisms Underlying Upper Airway Patterning and Tracheomalacia</td>
<td>National Institutes of Health</td>
<td>K01 HL115447</td>
<td>8/1/2012</td>
<td>7/31/2016</td>
</tr>
<tr>
<td>Bruce C Trapnell, MD</td>
<td>Childhood Interstitial Lung Disease (chILD) and Chemokine (C-C motif) Receptor 2 (CCR2) Deficiency</td>
<td>American Thoracic Society (Johns Hopkins School of Medicine)</td>
<td>PBMCCCR2</td>
<td>10/31/2013</td>
<td>-</td>
</tr>
<tr>
<td>Bruce C Trapnell, MD</td>
<td>Macrophage Based Gene Therapy for Hereditary Pulmonary Alveolar Proteinosis</td>
<td>National Institutes of Health</td>
<td>R01 HL118342</td>
<td>5/1/2014</td>
<td>4/30/2018</td>
</tr>
<tr>
<td>Bruce C Trapnell, MD</td>
<td>RLDC: Molecular Pathway-Driven Diagnostics & Therapeutics for Rare Lung Disease</td>
<td>National Institutes of Health</td>
<td>U54 HL127672</td>
<td>9/18/2014</td>
<td>7/31/2019</td>
</tr>
<tr>
<td>Timothy E Weaver, PHD</td>
<td>Stard7, a Novel Inhibitor of Allergic Lung Disease</td>
<td>National Institutes of Health</td>
<td>R01 HL122130</td>
<td>1/1/2014</td>
<td>12/31/2017</td>
</tr>
<tr>
<td>Scott Lewis Wexelblatt</td>
<td>Neonatal Abstinence Syndrome (NAS) Project</td>
<td>Nationwide Children's Hospital (University Hospitals)</td>
<td>K12 HL119986</td>
<td>9/1/2013</td>
<td>-</td>
</tr>
<tr>
<td>Investigator</td>
<td>Project Description</td>
<td>Institution</td>
<td>Grant ID</td>
<td>Start Date</td>
<td>End Date</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>---------------------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Jeffrey A Whitsett, MD</td>
<td>Transcriptional Programming of Asthma Related Pathology in Respiratory Epithelia</td>
<td>National Institutes of Health</td>
<td>R01 HL095580</td>
<td>4/1/2016</td>
<td>3/31/2018</td>
</tr>
<tr>
<td>Jeffrey A Whitsett, MD</td>
<td>Lung and Cardiovascular Development and Disease Pathogenesis Training Program</td>
<td>National Institutes of Health</td>
<td>T32 HL007752</td>
<td>7/1/2014</td>
<td>6/30/2019</td>
</tr>
<tr>
<td>Jeffrey A Whitsett, MD</td>
<td>Airway Progenitor Cell Proliferation and Differentiation During Lung Repair</td>
<td>National Institutes of Health</td>
<td>U01 HL110964</td>
<td>1/1/2016</td>
<td>12/31/2016</td>
</tr>
<tr>
<td>Jeffrey A Whitsett, MD</td>
<td>Molecular Atlas of Lung Development - Data Coordinating Center</td>
<td>National Institutes of Health (Duke University)</td>
<td>U01 HL122638</td>
<td>6/15/2014</td>
<td>4/30/2019</td>
</tr>
<tr>
<td>Jeffrey A Whitsett, MD</td>
<td>Lung MAP Atlas Research Center</td>
<td>National Institutes of Health</td>
<td>U01 HL122642</td>
<td>6/15/2014</td>
<td>4/30/2019</td>
</tr>
<tr>
<td>Total Annual Grant Award Dollars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Annual Industry Award Dollars

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Industry Sponsor</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Kingma, MD-PHD</td>
<td>Airway Therapeutics & Steve Linberg</td>
<td>$69,300</td>
</tr>
<tr>
<td>Vivek Narendran, MD</td>
<td>Chiesi</td>
<td>$181,104</td>
</tr>
<tr>
<td>Jeffrey A Whitsett, MD</td>
<td>Transcript, Inc.</td>
<td>$325,000</td>
</tr>
<tr>
<td>Total Annual Industry Award Dollars</td>
<td></td>
<td>$575,404</td>
</tr>
</tbody>
</table>