From the Diagnostic Immunology Laboratories

Clinical Immunology Laboratory | Research Immunology Laboratory

Patent Vignette (part 1 – Presentation)

The Clinical Immunology and Research Immunology Laboratories are integrated in a comprehensive Immunodeficiencies and Histiocytosis Program at Cincinnati Children’s Hospital Medical Center (CCHMC). It interfaces with the Molecular Genetics Laboratory (http://www.cincinnatichildrens.org/research/divi/genetics), as part of the Diagnostic Center for Heritable Immunodeficiencies, as well as with the Blood and Marrow Transplantation Program. To illustrate these interactions, each Newsletter will present a Patient Vignette, starting with an interesting result obtained in the Laboratory.

The figures on this page represent a SAP assay, i.e. flow cytometric detection of intracellular SAP (SLAM [signaling lymphocyte activation molecule] Associated Protein) in a patient (left) and healthy control (right). Top histograms are gated on CD8+ T-cells; middle on NK-cells; lower on NKT-cells. Green line represents isotype control; purple represents anti-sap staining.

The results reveal a lack of SAP expression in all cytotoxic T-cells subsets.

The patient is a 6-year boy with infectious mononucleosis, caused by Epstein-Barr virus (EBV).

EBV serology was consistent with acute EBV infection. In addition, highly elevated levels of EBV DNA were detected in his peripheral blood. Past medical history was unremarkable and the family history revealed one healthy older sister and a maternal uncle who had died from complications of lymphoma at the age of 15.

Other immunologic findings included increased immunoglobulins, the presence of atypical lymphocytes that showed an activated phenotype and highly elevated levels of soluble IL-2Ralpha 34195 pg/ml; normal range= 186-2678 pg/ml). Both NK and CTL function, as determined by in vitro NK- and CTL-assays, were significantly decreased.

See Part 2— Discussion on page 5
New Assays

**ALPS PANEL**

Immunophenotyping of peripheral blood lymphocytes can provide useful information in patients with an immunodeficiency disorder, especially when placed in the context of functional measurements of the immune system. The flow cytometric **ALPS Panel** is intended to screen for the presence of Autoimmune Lymphoproliferative Syndrome (ALPS). Together with clinical and other laboratory data, the **ALPS Panel** allows preliminary determination as to whether the patient has ALPS. Further testing, including genetic testing and demonstration of defective in vitro FAS-mediated apoptosis may be required to complete the diagnostic workup.

**Clinical Introduction**

**ALPS** is a primary immunodeficiency disorder (PID), characterized by defective lymphocyte homeostasis. Its main clinical manifestations are lymphoproliferation, causing lymphadenopathy, [hepato]splenomegaly and hypersplenism, autoimmunity (autoimmune cytopenias and other autoimmune disorders) and a highly increased, lifelong, risk of lymphoma. From a laboratory standpoint, there is defective FAS-mediated apoptosis, the presence of T-cells that lack CD4 and CD8 expression (so-called α/β-DNTCs), other immunophenotypic changes involving lymphocytes, hyperimmunoglobulinemia, elevated levels of interleukin (IL)-10 and vitamin B12, and the presence of auto-antibodies. **ALPS** is linked to genetic defects in the gene encoding FAS (**TNFRSF6**) in approximately 75% of patients (classified as **ALPS Ia**). In several other patients, defects have been found in the genes encoding FAS Ligand and caspase-10 (classified as **ALPS Ib and II**), respectively, while 20-25% of patients remain without a genetic diagnosis (classified as **ALPS III**). Current diagnostic guidelines include: chronic non-malignant lymphadenopathy or splenomegaly, presence of α/β-DNTCs (>1% of total lymphocytes or >33 absolute number of cells) and defective FAS-mediated lymphocyte apoptosis in vitro.

**Principle of the Assay**

This flow cytometry-based assay evaluates 4 immunophenotypic parameters, commonly found to be abnormal in **ALPS** patients. Parameter # 1 determines the overall percentage of α/β-DNTCs [R2], while parameter # 2 determines the proportion of α/β-DNTCs that express B220 [R3]. Parameter # 3 measures two opposing T-cells effects, the ratio between CD3/CD25 [R4] and CD3/HLA-DR positive cells [R5]. In **ALPS** there is an increase in HLA-DR-positive cells (on α/β-DNTCs and CD8+ T-cells), with a concomitant loss/absence in CD25-positive T-cells (due to loss/absence of CD4/CD25 cells). This ratio is abnormal in patients with **ALPS**, while comparable to healthy controls in relatives, who share the **TNFRSF6** mutation, but do not have clinical **ALPS**. The 4th parameter measures the percentage of memory B-cells in the peripheral blood (defined by CD27 expression) [R6]. In **ALPS** patients, there is a reduced percentage of CD27+ B-cells.

Age-dependency is present for #2 and #4. Results are regarded in the context of an age-matched reference range. If the patient is taking medications, the results of this assay need to be regarded with caution. This particularly applies to immunomodulating agents (e.g. corticosteroids, rituximab).

**Example of an ALPS Panel**

A representative **ALPS Panel** is depicted on the next page, with a healthy control (**HC**) on the left, and a patient with **ALPS** on the right. The patient is a 14 year old male, who presented at the age of 5 years with chronic lymphadenopathy and splenomegaly. Autoimmunity affecting neutrophils and platelets has been present during the last 5 years, requiring intermittent therapy (steroids, high-dose IVIG, and rituximab). Lymphadenopathy has largely resolved; splenomegaly remains present. The patient has a mutation in **TNFRSF6**, affecting the intracellular death domain of Fas.
ALPS is a prototypic primary immunodeficiency disorder of defective homeostasis of the immune system.

The presence of T-cells that express the alpha/beta T-cell receptor, but lack both CD4 and CD8 (α/β-double negative T-cells) is virtually pathognomonic for ALPS.

In the majority of patients, ALPS is inherited as an autosomal dominant disorder, due to mutations in the gene encoding FAS/CD95 (TNFRSF6).

The Immunodeficiency & Histiocytosis Group offers comprehensive programs for ALPS, including genetic testing and treatment programs.

Interpretation of Results
The first 2 parameters are unique for ALPS, reflect lymphoproliferation and indicate if this is on the basis of defective function of FAS (indicated by the expression of B220). Particularly in cases, in which there is a minimal expansion of α/β-DNTCs (e.g. because the patient is on immunosuppressive medications), adding the B220 marker (with near 100% sensitivity and specificity) allows one to distinguish between an incidental finding of increased α/β-DNTCs, and the pathognomonic expansion of B220-positive α/β-DNTCs, seen only in ALPS patients.

The third and fourth parameters evaluate aspects of T- and B-cell dysfunction; possibly linked to autoimmune. These immunophenotypic findings can also be found in disorders of immunodysregulation that share features with ALPS, such as common variable immunodeficiency and other immunodeficiency disorders.

Following detection of ALPS or suspected ALPS, further workup may be indicated, which involves laboratory testing (e.g. IL-10) and genetic testing of TNFRSF6 (http://www.cincinnatichildrens.org/research/div/genetics).

Kathryn Quinn

Representative ALPS Panel. Healthy Control (left); Patient (right)
From the Diagnostic Immunology Laboratories

Clinical Immunology Laboratory | Research Immunology Laboratory

**Upregulation of CD64 on neutrophils is one of the earliest events in the inflammatory cascade.**

*This assay cannot be used in the absence of neutrophils. In addition, caution should be used in patients receiving therapeutic G-CSF, as G-CSF induces CD64 upregulation.*

**CD64 UPREGULATION**

Following the release of pro-inflammatory cytokines and mediators (e.g. interferon-gamma [INF-γ] and granulocyte-colony stimulating factor [G-CSF]) in patients with new onset sepsis or tissue injury, there is a rapid increase in expression of CD64 on neutrophils. Thus, measurement of neutrophil CD64 up-regulation can provide useful and timely information regarding impending sepsis and tissue injury, complementing other data (e.g. CRP). CD64 is the high-affinity Fc receptor for IgG. Its (up-regulated) expression on neutrophils is measured by flow cytometry, using the Leuko64™ kit (Trillium Diagnostics, LLC).

The kit is composed of a mixture of monoclonal antibodies with specificities to CD64 and CD163 (monocyte marker) and a fluorescent bead suspension used for instrument calibration and to provide quantitative results for CD64 and CD163 expression (i.e. “standard curve”).

Constitutive expression of CD64 on monocytes (identified by size and CD163 expression) provides an internal positive control, while lack of CD64 on lymphocytes (identified by size) provides an internal negative control. In combination with automated software for data analysis, using cluster-finding algorithms, the kit has a rapid turn-around time for result reporting, making this an assay specifically intended for use in suspected sepsis. The results correlate well with CRP values.

Potential applications include: evaluation of sepsis, evaluation of fever in patients receiving medications that can cause fever (e.g. monoclonal antibodies), fever in transplant patients to distinguish between infection and rejection (solid organ transplantation) or graft-versus-host disease (bone marrow transplantation). Since neutrophils up-regulate CD64 in response to G-CSF, this assay can also be used to determine the response to exogenous G-CSF.

---

**Down the Pipeline**

**PLASMA CYTOKINES**

Cytokines are small, secreted, proteins which mediate and regulate immunity, inflammation, and hematopoiesis. They are produced *de novo* in response to certain (immune) stimuli. They generally (although not always) act, over short distances and short time spans and at very low concentrations, by binding to specific membrane receptors, which then signal the cell, to alter its behavior. Responses to cytokines include increasing or decreasing expression of membrane proteins (including cytokine receptors), proliferation, and secretion of effector molecules. It is common for different cell types to secrete the same cytokine or for a single cytokine to act on several different cell types (pleiotropy). Cytokines are redundant in their activity, meaning similar functions can be stimulated by different cytokines.

The measurement of the levels of cytokines and/or soluble markers of immune activation can provide reliable information regarding the disease diagnosis, disease stage, prognosis, and response to therapy. Applications cover the entire medical spectrum, but are most relevant in conditions that are associated with immunodeficiency, inflammation and autoimmunity. For example, detecting and monitoring of pro-inflammatory cytokines can be used to predict and monitor response to disease modifiers (e.g. infliximab, anakinra) in the case of rheumatologic disease or inflammatory bowel disease. Isolated increased levels of IL-10 can be used in the diagnosis of ALPS.
Cytokines are often produced in a cascade, as one cytokine stimulates its target cells to make additional cytokines. Cytokines can also act synergistically (two or more cytokines acting together) or antagonistically (cytokines causing opposing activities). The short half-life, low plasma concentrations, pleiotropy, and redundancy of cytokines all complicate their isolation and characterization. Cytokine levels in plasma and other biological fluids are now recognized as potential and useful markers of ongoing clinical disorders.

A new technology using spectrally encoded antibody-conjugated beads can be used to measure several different cytokines simultaneously. In general, Multiplex Bead immunoassays represent solid phase sandwich immunoassays, which are read on specialized machines. By monitoring the spectral properties of the beads and the amount of fluorescence, the instrument measures the concentration of one or more analytes present in the original specimen.

The Plasma Cytokine Assay will be available, as a 10-cytokine panel in October, 2005.

Patient Vignette (part 2 — Discussion)

The decreased SAP expression in all cytotoxic lymphocyte populations (CD8+ T-cells, NK-cells and NKT-cells), as detected by the flow cytometric SAP assay, together with the clinical history and laboratory testing (cytotoxicity assays) point towards X-linked lymphoproliferative disease (XLP). DNA was submitted to the Molecular Genetics Laboratory for mutational analysis of SH2D1A, the gene mutated in XLP. The result revealed a disease-causing mutation in SH2D1A. The mother and grandmother (the mother of the maternal uncle) were found to be carriers of this mutation, while the older sister was not.

XLP is a primary immunodeficiency disorder affecting (cytotoxic) lymphocyte function, especially, but not exclusively, in response to EBV. This particular family illustrates two possible clinical phenotypes, associated with SH2D1A mutations: 1] severe, fatal to near fatal, infectious mononucleosis. This is the most common presentation of XLP, occurring in >50% of patients; 2] Lymphoma and lymphoproliferative disease. These occur in about one-third of cases, some of whom have survived an initial EBV infection. The lymphomas seen in XLP are typically high-grade B-cell lymphomas, non-Hodgkin type, often extranodal, particularly involving the GI system.

Males, who develop a second distinct lymphoma (not relapse) after achieving initial remission after standard chemotherapy for lymphoma, should be suspected of XLP.

The other clinical phenotypes include hypogammaglobulinemia (~30% of patients), which can manifest itself as common variable immunodeficiency (CVID), and less frequently aplastic anemia, vasculitis, and lymphoid granulomatosis. Since SAP is required for normal cytotoxic function, EBV-infection may cause secondary/reactive hemophagocytic lymphohistiocytosis (HLH).

Mutations in SH2D1A are inherited in an X-linked manner. De novo mutations in SH2D1A are rarely identified; therefore, mothers of males with proven mutations in SH2D1A are very likely to be carriers. Prenatal diagnosis is possible in known carriers (who may demonstrate germ-line mosaicism). Genotype-phenotype relationships are not apparent. Large deletions do not cause a more severe phenotype, and considerable phenotype variability can exist within a family.

Allogeneic bone marrow transplantation (BMT) is the only curative therapy of XLP. Supportive treatment includes IVIG, rituximab, acyclovir, and others.
### CURRENT MENU OF AVAILABLE TESTS

<table>
<thead>
<tr>
<th>Test Code</th>
<th>Test Description</th>
<th>Unit(s)</th>
<th>Reference Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT 998195c9</td>
<td>3-ADN panel</td>
<td>$105</td>
<td>3 mL (1 mL EDTA)</td>
</tr>
<tr>
<td>CPT 998353</td>
<td>Antigen Stimulation</td>
<td>$444</td>
<td>10 mL (5 mL Sodium Heparin)</td>
</tr>
<tr>
<td>CPT 998184</td>
<td>CD16/CD56 (CD154)</td>
<td>$185</td>
<td>5 mL Sodium Heparin</td>
</tr>
<tr>
<td>CPT 998184</td>
<td>CD14/CD16/CD14 (CD14-RC)</td>
<td>$389</td>
<td>3 mL (1 mL EDTA)</td>
</tr>
<tr>
<td>CPT 998184</td>
<td>CD55/PNH Screen</td>
<td>$85</td>
<td>3 mL (1 mL EDTA)</td>
</tr>
<tr>
<td>CPT 998184</td>
<td>CD64 (Leuko64)</td>
<td>$48</td>
<td>1 mL (0.5 mL EDTA)</td>
</tr>
<tr>
<td>CPT 998184</td>
<td>CD122/CD27</td>
<td>$485</td>
<td>3 mL (1 mL EDTA)</td>
</tr>
<tr>
<td>CPT 998549</td>
<td>CD16+ activation</td>
<td>$71</td>
<td>10 mL (5 mL Sodium Heparin)</td>
</tr>
<tr>
<td>CPT 988184</td>
<td>Cytokines, intracellular (IL-4, IFN-γ, TNF-α)</td>
<td>$910</td>
<td>3 mL (1 mL Sodium Heparin)</td>
</tr>
<tr>
<td>CPT 988184</td>
<td>Cytokines, Plasma (panel of 10)</td>
<td>$1397</td>
<td>5 mL (1 mL EDTA)</td>
</tr>
<tr>
<td>CPT 988849</td>
<td>EBV immortalized cell line</td>
<td>$172</td>
<td>3 mL Sodium Heparin</td>
</tr>
<tr>
<td>CPT 988184</td>
<td>Lymphocyte Activation Markers</td>
<td>$559</td>
<td>5 mL Sodium Heparin</td>
</tr>
<tr>
<td>CPT 988184</td>
<td>Lymphocyte subset analysis (CD3,4,8,16,56,19)</td>
<td>$302</td>
<td>3 mL (1 mL EDTA)</td>
</tr>
<tr>
<td>CPT 988353</td>
<td>McGrack Stimulation</td>
<td>$667</td>
<td>10 mL (5 mL Sodium Heparin)</td>
</tr>
<tr>
<td>CPT 988849</td>
<td>Neutrophil function battery</td>
<td>please call to schedule</td>
<td></td>
</tr>
<tr>
<td>CPT 988184</td>
<td>NK function</td>
<td>$777</td>
<td>10 mL (5 mL Sodium Heparin)</td>
</tr>
<tr>
<td>CPT 988184</td>
<td>Perforin/Granzyme B</td>
<td>$405</td>
<td>3 mL (1 mL EDTA)</td>
</tr>
<tr>
<td>CPT 988184</td>
<td>SAP protein (for R/O XLP?)</td>
<td>$411</td>
<td>3 mL (1 mL Sodium Heparin)</td>
</tr>
<tr>
<td>CPT 983520</td>
<td>Soluble CD16</td>
<td>$512</td>
<td>3 mL (1 mL EDTA) or NaHep</td>
</tr>
<tr>
<td>CPT 983520</td>
<td>Soluble IL-2Rα</td>
<td>$209</td>
<td>3 mL (1 mL EDTA) or NaHep</td>
</tr>
<tr>
<td>CPT 988184</td>
<td>TCR αβ chain</td>
<td>$453</td>
<td>3 mL EDTA</td>
</tr>
<tr>
<td>CPT 988184</td>
<td>TCR V L chain</td>
<td>$728</td>
<td>3 mL EDTA</td>
</tr>
<tr>
<td>CPT 988184</td>
<td>WASKott-Aldrich syndrome Protein (WAS)</td>
<td>$190</td>
<td>5 mL Sodium Heparin</td>
</tr>
<tr>
<td>CPT 988184</td>
<td>ZAP70</td>
<td>$218</td>
<td>3 mL EDTA or NaHep</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

**Diagnostic Immunology Laboratory**

**Part of the Division of Hematology/Oncology**

Phone: 513-636-4685  Fax: 513-636-3861

www.cincinnatichildren.org/medicine/immunodeficiencies

---

**From the Diagnostic Immunology Laboratories**

**Clinical Immunology Laboratory | Research Immunology Laboratory**

---

**Cincinnati Children’s Hospital Medical Center**

**is a FOCIS Center of Excellence**

---

**October 2005 | Issue 1**