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A recent promise to access unstructured clinical data from electronic health records on large-scale has
revitalized the interest in automated de-identification of clinical notes, which includes the identification
of mentions of Protected Health Information (PHI). We describe the methods developed and evaluated as
part of the i2b2/UTHealth 2014 challenge to identify PHI defined by 25 entity types in longitudinal clin-
ical narratives. Our approach combines knowledge-driven (dictionaries and rules) and data-driven
(machine learning) methods with a large range of features to address de-identification of specific named
entities. In addition, we have devised a two-pass recognition approach that creates a patient-specific
run-time dictionary from the PHI entities identified in the first step with high confidence, which is then
used in the second pass to identify mentions that lack specific clues. The proposed method achieved the
overall micro F1-measures of 91% on strict and 95% on token-level evaluation on the test dataset (514 nar-
ratives). Whilst most PHI entities can be reliably identified, particularly challenging were mentions of
Organizations and Professions. Still, the overall results suggest that automated text mining methods can
be used to reliably process clinical notes to identify personal information and thus providing a crucial
step in large-scale de-identification of unstructured data for further clinical and epidemiological studies.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

A recent promise and the potential of wider availability of data
from Electronic Health Records (EHRs) to support clinical research
are often hindered by personal health information that is present
in EHRs, raising a number of ethical and legal issues.
De-identification of such data is therefore one of the main
pre-requisites for using EHRs in clinical research. As a result, there
is a growing interest for automated de-identification methods to
ultimately aid accessibility to data by removing Protected Health
Information (PHI) from clinical records. De-identification of
unstructured data in particular is challenging, as PHI can appear
virtually anywhere in a clinical narrative or letter. This task is often
considered as Named Entity Recognition (NER), where mentions of
specific PHI data types (e.g. patient names, their age and address)
need to be identified in the text of clinical narratives.
Automated de-identification of unstructured documents has
been a research topic for more than twenty years. As early as
1996, Sweeney et al. proposed a rule-based approach to recognize
twenty five overlapping entity types they identified as PHI in EHRs
[1]. Since then, a large number of systems have been introduced,
including knowledge-based [2–5] and data-driven [6–11], as well
as hybrid [12–14] methods that combine various approaches. In
terms of types of clinical narrative, previous de-identification
research has explored varied clinical documents such as discharge
summaries [11,15], pathology reports [9], nursing progress notes
[2] and mental health records [4].

The 2006 i2b2 de-identification challenge [15] was the first
effort to provide a common test-bed for eight PHI entity types
(mentions of Patients, Doctors, Hospitals, IDs, Dates, Locations,
Phone numbers and Age) in clinical discharge summaries. The sub-
mitted systems ranged from rule-based [5] and machine-learning
(ML) methods (e.g. using Conditional Random Fields [13], Hidden
Markov Models [13], and Decision Trees [8]) with a wide range
of features, to hybrid approaches (e.g. combining rules and
Support Vector Machines [12]). A notable observation across
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methods was the use of knowledge-driven techniques (in particu-
lar rules) both for the direct recognition of PHI and in support of
data-driven and hybrid methods. For example, rules were used as
features in ML models (e.g. indicating whether a particular rule
was triggered) [12], as a post-processing correction module [13]
or combined with data-driven results at the final step (e.g. integra-
tion of ML and rule-based annotations) [14]. This trend was often
motivated by the presence of a number of categories that are char-
acterized by regularized expressions (e.g., date, phone, zip/post-
code, and identification numbers), which make rules an efficient
modeling technique. In general, the 2006 shared task showed that
data-driven methods with features generated by rules for regular-
ized expressions performed best [8,13]. They were followed by
hybrid methods [12], while the pure rule-based systems proved
to perform less well [5].

The 2014 i2b2/UTHealth [16] Shared Task in de-identification
[17] of longitudinal clinical narratives focused on 25 entity types,
inclusive of twelve types as defined by the Health Insurance
Portability and Accountability Act (HIPAA). The entity types were
grouped into seven main categories: Names (e.g., patient and doc-
tor names), Profession, Locations (e.g., street, city, zip code, organi-
zations), Contacts (e.g., phone, fax, email), IDs (e.g., medical record,
identification number), Age and Dates. The organizers provided a
fully annotated mention-level training dataset, as well as a test
dataset for the evaluation. This paper describes a hybrid method
that integrates the results of knowledge- (dictionary- and
rule-based components) and data-driven methods. We present
the results and further discuss the challenges in the
de-identification task.
2. Methodology

The training data (790 narratives, 460,164 tokens) was released
in two batches by the organizers. We have used the first batch (521
narratives, 316,357 tokens) for the initial design of the methods,
whereas the second batch (269 narratives, 143,807 tokens) was
used as a development set for validation and tuning. The initial
analysis of the training data confirmed that some of the entity
types are more lexically closed (e.g. country and city names) or
regularized (e.g. zip codes, phones, etc.) than the others (e.g.
patient and doctor names). The methods developed have largely
followed that observation, devising a hybrid approach aiming to
combine different methods where appropriate. Fig. 1 shows an
overview of the system, and the steps are detailed below.

2.1. Pre-processing

The narratives were pre-processed with cTAKES [18] and GATE
[19] to provide basic lexical and terminological features, including
tokenization, sentence splitting, part-of-speech tagging and
chunking.

2.2. Dictionary- and rule-based taggers

The dictionary-based taggers were used for the Hospital, City,
Country, State, Profession and Organization entity types. The dic-
tionaries (see Supplementary material for the full list) were col-
lected from open sources such as Wikipedia, GATE and deid
[2,20]. We have merged the entity-specific term lists from these
sources and then manually filtered the resulting dictionaries to
exclude ambiguous terms.

The rule-based tagger included a set of rules that exploited sev-
eral types of features including the output of the dictionary-based
taggers to recognize entities. Five feature types were used in the
rule engineering:
Please cite this article in press as: A. Dehghan et al., Combining knowledge- an
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1. Orthographic features, which include word characteristics such
as allCapitals, upperInitial, mixedCapitals, or lowerCase; as well
as token/word length.

2. Pattern features, which include common lexical patterns of
specific entity types as derived from the training data set e.g.,
date (e.g., DD-MM-YYYY), zip (XXXX), telephone number
(XXX-XXX-XXXX) and so forth.

3. Semantic/lexical cues or entity types. For example, Street names
often include lexical cues such as ‘street’, ‘drive’, ‘lane’, State
(e.g., ‘‘DC’’, ‘‘CA’’, etc.), and so forth.

4. Contextual cues that indicate the presence of a particular entity
type. They include specific lexical expressions (e.g., person and
doctor titles, months, weekdays, seasons, holidays, common
medical abbreviations, etc.), symbols (e.g., bracket and colon,
e.g. used for Username and Medical record respectively), and
other special characters such as white space and newline.

5. Negative contextual cues (e.g., lexical and orthographic) are
used for disambiguation (e.g., for entity types that are similar
e.g., phone and fax number, patient and doctor names).

Using the combination of these features enabled us to craft a
relatively small rule set of 5 rules on average per entity type (the
minimum of 1 for zip, fax and email, and the maximum of 11 for
age). The rules were developed using Java Annotation Patterns
Engine (JAPE) [19] and Java regular expressions. An example rule
is given in Table 1.

2.3. ML-based tagger

As target entities comprise spans of text, we approached the
task as a token tagging problem and trained separate Conditional
Random Fields (CRF) [21] models for each entity type. We used a
token-level CRF with the Inside–Outside (I–O) schema [22], for
each of the entity types separately. In this schema, a token is
labeled with I if it is inside the entity span and with O if it is outside
of it. For example: in sentence ‘‘Saw Dr. Oakley 4/5/67’’, token
‘‘Oakley’’ will be tagged as I_Doctor (inside a doctor’s name),
whereas all other tokens will be annotated as O_Doctor (outside
doctor’s name). This schema provides more examples of ‘‘inside’’
tokens to learn from than the other schemas (e.g. the Beginning–
Inside–Outside, B–I–O), and in our case, it also provided satisfac-
tory results during training.

The feature vector consisted of 279 features for each token (see
Supplementary material for the full list of features), representing
the token’s own properties (e.g. lexical, orthographic and semantic)
and context features of the neighboring tokens. Experiments on the
development set with various context window sizes showed that
two tokens on each side provide the best performance. The follow-
ing features were engineered for each token:

1. Lexical features included the token itself, its lemma and POS tag,
as well as lemmas and POS tags of the surrounding tokens. Each
token was also assigned its location within the chunk (begin-
ning or inside). All chunk types returned by cTAKES (see
Supplementary material for the full list) were considered for
this feature.

2. Orthographic features captured the orthographic patterns associ-
ated with gold-standard entity mentions. For example, a large
percentage of hospital mentions are acronyms (e.g., DHN,
EHMS), doctor and patient names are usually capitalized (e.g.,
Xavier Rush, Yosef Villegas), dates contain digits and special char-
acters (e.g., ‘‘2069-04-07’’, ‘‘04/07/69’’), etc. We engineered two
groups of orthographic features. The features in the first group
captured standard orthographic characteristics (e.g., is the
token capitalized, does it consist of only capital letters, does it
contain digits, etc.). The second group aimed to further model
d data-driven methods for de-identification of clinical narratives, J Biomed
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Fig. 1. System architecture.

Table 1
Example of a rule. Row 2 shows a rule for capturing a subset of Street mentions. The rule uses four types of features (pattern, orthographic indicators and semantic/lexical and
contextual clues).

Feature type Pattern Orthographic Semantic/Lexical Contextual
{RegEx} = [1-9][0-9]* {ORTHO} = {upperInitial, allCapital, . . .} {STREET_CLUE} = {Street, St, Drive, Dr, . . . } {SYMBOL} = {£, ‘.’}

A rule {RegEx} {ORTHO} {STREET_CLUE}{SYMBOL}
In text . . .62 Angora Dr. . . .

. . .1 Jefferson Road . . .

. . .55 Bury St . . .
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the token’s orthographic pattern using an abstract representa-
tion where each upper-case letter is replaced with ‘‘X’’,
lower-case letter with ‘‘x’’, a digit with ‘‘d’’ and any other char-
acter with ‘‘S’’. Two features were created in this group: the first
feature contained one mapping for each character in a token
(e.g., BrightPoint was mapped to ‘‘XxxxxxXxxxx’’); the second
feature mapped a token to a four character string that contained
(binary) indicators of a presence of a capital letter, a lower case
letter, a digit or any other character (absence was mapped to a
‘‘_’’), e.g., BrightPoint was mapped to ‘‘Xx_ _’’.

3. Semantic features indicate if a given token represents an entity of
a specific category. These features were extracted using dic-
tionary matching for US states and cities, calendar months, pro-
fessions and profession hints (e.g., ‘‘worked for’’, ‘‘retired from’’,
etc.). A feature that captures whether a token is likely to repre-
sent a US zip code was also extracted using a regular expression.
Please cite this article in press as: A. Dehghan et al., Combining knowledge- an
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4. Positional features included the absolute position of the line con-
taining the token (in order to utilize the semi-structured nature
of clinical narratives) and a binary feature indicating the pres-
ence of a space character between the current and the next
token (to capture the cases where a single annotation unit
was tokenized in multiple tokens e.g., the following date
‘2069-04-07’ is tokenized in five tokens: ‘2069’, ‘–’, ‘04’, ‘–’, ‘07’).

We initially constructed ML models for each entity category
present in the training data. After the validation using the develop-
ment dataset and comparison with the results of the rule-based
component, we opted for separate ML models for the following
entity types: City, Date, Hospital, Organization, Profession and
Patient. Each of the models was trained on a particular sub-set of
features (determined by using a development set from the training
data).
d data-driven methods for de-identification of clinical narratives, J Biomed
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Fig. 2. Proposed methods for NER of PHI.
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The output of the ML models was post-processed by a set of
manually crafted rules with the goal of expanding the resulting
tags (reducing false negatives) or removing them (reducing false
positives). The rules were designed to capture the context (neigh-
boring tokens) of an ML tag. For example, if the token was tagged
as a Hospital, its first letter was a capital letter and one of the
nearby tokens is the word ‘Hospital’ then the whole window
between that token and ‘Hospital’ was tagged as a Hospital (e.g.,
‘Barney Convalescent Hospital’). Another type of rule is removing
the Date tag of a token that has more than two ‘/’ characters in
its neighborhood e.g., ‘140/4.0/107/25.7/32/1’.

Along with our CRF model we have used another ML-based tag-
ger i.e., the Stanford Named Entity Recognizer [23] to obtain addi-
tional annotations of Organizations; it was only applied on
sentences that contained specific contextual indicators of the
entity type (e.g., ‘‘works in’’, ‘‘runs’’, ‘‘church’’, ‘‘lodge’’, etc.). The out-
put of the tagger was directly added to the final output of the
system.

2.4. Second-pass recognition

In order to capture PHI mentions that lack local contextual cues
implemented by steps II and III, we devised a ‘two-pass’ approach.
Specifically, for each entity type, initial annotations were extracted
at the patient-level (the dataset contained up-to five narratives per
patient) using the methods described in steps II and III. These are
then collected into a temporary, run-time patient-level dictionary,
which is filtered to remove ambiguous terms and obvious false
positives. This filtering was based on a set of terms obtained from
the analysis performed on the development set. The
patient-specific dictionary is then used for the ‘second-pass’ dic-
tionary matching (using longest string matching) on the narratives
belonging to that patient.

2.5. Integration module

This component integrates the results from the previous steps
into different submissions, merging the tags (at the
mention-level) derived from different components (see below).
The submission combinations were determined based on the per-
formance achieved during development and specifically based on
the ‘strict text matching’ results. Three different submissions were
created.

In all of the submissions, we relied on rules only (i.e. no dictionar-
ies or ML) for Age, Street, Zip, Email, Fax, Phone, Username, Identification
number and Medical record. The dictionary and rules were combined
for Country and State; and the dictionary and ML results were inte-
grated for City, Hospital, Organization and Profession. The three sub-
missions differed only in annotations used for Date, Doctor and
Patient mentions (see Supplementary material for the complete sub-
mission schema; Fig. 2 illustrates Submission 3):

� Submission 1 included only rule-based approaches for Date,
Doctor and Patient; this submission aimed at optimizing
precision.
� Submission 2 targeted recall and integrated – on top of

Submission 1 – all ML models for Date, Doctor and Patient.
� Submission 3 aimed to optimize the F1-measure: it included

Submission 1 and the ML model for Date and Patient.

To deal with the integration of overlapping tags from multiple
categories (i.e. conflicting annotations) we have developed a prior-
ity sorting approach. A frequent example were confusions between
Doctor and Patient (given that both are personal names), and Age
and Date (e.g., ‘‘80’s’’). Based on the results during development,
we have defined specific priorities for each of the categories, for
Please cite this article in press as: A. Dehghan et al., Combining knowledge- an
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example, Doctor was ‘‘preferred’’ over Patient, while Age was ‘‘pre-
ferred’’ over Date, etc. (see Supplementary material for the full list
of priorities assigned to categories). During the integration, multi-
ple categories assigned to a span were sorted by priority and the
one with the highest priority was chosen as the final tag.
3. Results and discussion

The PHI entity recognition results on the test dataset (514 nar-
ratives, 297,459 tokens) are given in Table 2. There were three offi-
cial evaluation measures based on different matching strategies:
token level matching that requires at least one token of the gold
standard span and the resulting span to match; text strict matching
that requires an exact match of the gold standard span with the
resulting span, and the HIPPA strict matching that considers only
the categories that are in the strict interpretation of the HIPAA
guidelines (see Supplementary material for the full list). Our third
run provided the best micro-average F1-measure (90.65%) along
with the highest precision (93.06%) and was officially ranked sec-
ond best in the challenge based on token level matching (both
when considering all PHI and HIPAA only entity types) and third
when considering all PHIs (text strict matching).

The results of our runs mostly concur with the aim of each of
the submissions, with the exception of Submission 1 that had a
slightly lower precision than Submission 3, which is likely due to
the fact that the ML model for the Date category (Submission 3)
provided slightly higher precision than the rule-based tagger
included in Submission 1 (data not shown). The token-level match-
ing scores were significantly higher (around 4% across all the mea-
sures). There are several reasons for this: there were fewer false
negatives (1334 for token-level vs. 1728 for the strict matching),
which indicate that both the ML and the rule-based approaches
would benefit from a better method for boundary adjustment.
Furthermore, the correctly recognized gold standard entities have
64% of terms of a length greater than one, which consequently
resulted in the increase of true positives at the token-level
evaluation.

We note that our results on the development set are fairly con-
sistent (less than 1% F1-measure, see Table 3) compared to the test
evaluation results shown in Table 2 (i.e., there was not much
over-fitting present), indicating a generalizable methodology.

The results for different PHI categories for Submission 3 (see
Table 4) indicate that well-defined and structured categories such
as Age, Date, Email, Idnum, Medical record, Phone, Street and Zip can
be extracted with high F1-measure (over 94%). On the other hand,
d data-driven methods for de-identification of clinical narratives, J Biomed
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Table 2
Micro-averaged results on the test data (514 narratives). (P = precision; R = recall; F = F1-measure).

Table 3
Micro-averaged results on the development set (269 narratives).

Table 4
Per category performance on the test data, submission 3 (text strict matching).

Category Entity type Frequency Precision
(%)

Recall
(%)

F-measure
(%)

AGE Age 764 97.49 91.62 94.47

DATE Date 4980 95.52 95.58 95.55

CONTACT Email 1 100.00 100.00 100.00
Fax 2 33.33 50.00 40.00
Phone 215 96.57 91.63 94.03

LOCATION City 260 83.95 78.46 81.11
Country 117 83.65 74.36 78.73
Hospital 875 81.88 76.46 79.08
Organization 82 40.48 20.73 27.42
State 190 92.00 84.74 88.22
Street 136 96.92 92.65 94.74
Zip 140 100.00 94.29 97.06

ID Idnum 195 90.53 78.46 84.07
Medical
record

422 96.03 91.71 93.82

NAME Doctor 1912 96.56 83.79 89.80
Patient 879 88.14 84.53 86.30
Username 92 100.00 95.65 97.78

PROFESSION Profession 179 59.17 55.87 57.47
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ambiguous (and potentially contextually dependent) categories
such as City, Country, Doctor, Hospital, Patient and State were
slightly more complex with F1-measure varying between 79%
and 90%. Finally, the categories that are lexically variable and have
low frequency (in both the training and test data) proved to be
challenging, with the method achieving F-measures of 57%
(Profession) and 27% (Organization). Organization, in particular,
was a relatively infrequent (124 mentions in the 790 narratives
in the training data) and broadly defined category (see below).

Based on the experiments conducted during the development
phase, the two-pass recognition method was found to be effective
for the following entity types: in the rule-based components:
Patient, Doctor, Zip, Medical record number, and Identification num-
ber; for the ML-based taggers: City, Hospital and Patient. We further
evaluated the impact of the proposed two-pass recognition method
on the test set for the relevant entity types (see Table 5). Five of the
seven entity types on which we applied this method showed a gain
of 2–7% F1-measure; four entity types showed a gain of 3–9% in
recall and three entity types showed a gain of 5–7% precision.
Please cite this article in press as: A. Dehghan et al., Combining knowledge- an
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The notable gain in precision was unexpected. A closer examina-
tion showed that the dictionary filtering step was the main factor
in this regard. These results are consistent with the training dataset
(not shown), indicating that two-pass recognition can be a useful
method for de-identification of longitudinal clinical notes.

Another characteristic of our method is the integration of
knowledge- and data-driven methods. An analysis on the test data-
set results showed notable gains for a number of entity types. We
observed gains in F1-measure for Patient (+4.37%), City (+13%),
Hospital (+1%), and Date (1.5%). Two special cases where our
knowledge-driven component had the greatest impact were
Organization (+25%) and Profession (+56%). Extremely poor perfor-
mance of our ML models on these categories (�1% F-measure) is
due to their low frequency in the training data and lexical broad-
ness (see below). We note that despite expected low impact of
the two ML models, we decided to include them in the final pipe-
line because our dictionary-based components for Profession and
Organization also had low results during development (compared
to other entity types).

We performed the error analysis on the whole test data set. Five
major error categories have been identified. The first category com-
prises both FNs and FPs due to lack of representative features or
training data. Typical examples are Organization and Profession as
broadly defined, ambiguous, context dependent and infrequent
(in terms of the gold standard mentions) entity types. Our features
were not able to capture all possible variations of Organizations
(‘Vassar’, ‘army’, ‘catering business’, ‘weight room’, etc.) and
Professions (‘Personnel Officer’, ‘mathematics’, ‘Ground Transit
Operators Supervisor’, ‘model planes’, ‘veteran’, ‘Craftperson’, ‘Justice
of the peace’, etc.). FPs belonging to this category of errors were
the consequence of context dependence, most evident with
Profession type e.g., ‘with assistance from the plumber’, ‘use pill cut-
ter’, ‘lab tech’.

Opting for the token level CRF contributed notably to drop in
performance in terms of the strict measures. Large portion of FNs
was due to the models correctly tagging only a subset of tokens
of the gold standard annotations. This was the case for most of
the entity types considered by ML e.g. (correctly tagged tokens

are underlined): Doctor (‘Johnathan Kiefer’), Patient (‘Clarence H.

HESS’), City (‘Cape Cod’), Profession (‘Ground Transit Operators

Supervisor’), etc.
Specific feature groups generated a subset of FPs i.e., lexical fea-

tures produced confusions between first names of doctors and
d data-driven methods for de-identification of clinical narratives, J Biomed
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Table 5
Impact of the two-pass recognition method on the test set.
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patients, while orthographic features caused many medical abbre-
viations to be tagged as hospitals (‘PCP’, ‘LIMA’, ‘CHB’, etc.).

The forth error category comprised FNs and FPs that were the
result of incorrect tokenization, which is mainly a direct conse-
quence of data quality issues with the provided documents. For
example, in a number of cases there was a missing space between
two neighboring tokens; examples include identification numbers
and hospital abbreviations (‘45479406HBMC’); Hospitals (‘Roper
Hospital NorthProblems’, ‘atNorth Mountain Hospital’); Patients
(‘VivianLee Jorgenson’, ‘EarnestBranche’), etc.

As expected, some false positives and negatives were due to
inconsistent gold-standard annotations. A prominent example
includes mentions of the language spoken by a patient and the
Country category. For example, 80% of the cases where a mention
refers to patient speaking English were annotated as Country in
the training data, while only 20% of such mentions were annotated
in the test data.

4. Conclusion

Automated de-identification of clinical narrative data is a key
for using EHR to facilitate large-scale evidence based research in
medicine. In this paper we described and evaluated a hybrid
approach for the identification of PHI from clinical narratives.
Our approach is based on the combination of hand-crafted rules,
focused dictionaries and various features used in the ML models.
We have also proposed a novel two-pass recognition approach to
address de-identification of longitudinal narratives by generating
run-time and patient-specific PHI dictionaries that are used for
identification of mentions that lacked specific clues considered
by the initial entity extraction modules. A method integration
approach proposed included a combination of initial taggers’ out-
put (rule, dictionary, ML, and two-pass recognition) and a priority
sorting approach used to select the categories in cases of overlap-
ping text spans that are tagged as belonging to different PHI types.

The overall results showed good performance for frequent
and well-scoped classes (e.g., Date, Email, Phone and Street);
non-focused and context-dependent categories (e.g. City, Country,
Doctor, Hospital and Patient) had reasonable performance, whereas
infrequent and broadly scoped categories (Organization and
Profession) proved to be challenging and will require further inves-
tigation for identifying additional local cues and/or modeling the
contextual dependencies (e.g. taking into account
inter-dependences between PHI mentions e.g., by applying data
mining methods (association rule analysis, clustering, etc.). We
also plan to explore boundary adjustment techniques including
alternative sequence label modeling to improve the identification
of entity types [24].

Availability

The system is available at http://clinical-deid.sourceforge.net/.
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