Satoshi H. Namekawa, PhD

Academic Affiliations

Associate Professor, UC Department of Pediatrics

Phone 513-803-1377

Fax 513-803-1160


The long-term goal of Dr. Namekawa's research is to understand the mechanisms and evolution of epigenetic events during mammalian reproduction. One of the focus areas is epigenetic regulation of sex chromosomes in germ cell development. Recently, his laboratory demonstrated that DNA damage response pathways trigger epigenetic programming on the sex chromosomes in germ cells. An on-going direction of the laboratory is to pursue a general link between DNA damage response pathways and epigenetic programming. Another goal of the laboratory is to identify novel factors and related pathways that control epigenetic programming during mouse reproduction, especially focusing on the events occurring on sex chromosomes during spermatogenesis as well as the regulatory mechanisms in germline stem cells.

Visit the Namekawa Lab.

Dr. Namekawa received his PhD from Tokyo University of Science in 2005. He completed postdoctoral training in the laboratory of Dr. Jeannie T. Lee at Massachusetts General Hospital and Harvard Medical School in 2009, followed by his faculty appointment at Cincinnati Children's in 2009. He is funded by NIH R01 Award and the Basil O’Connor Award from March of Dimes Foundation.

He received the 2015 New Investigator Award from the Society for the Study of Reproduction.

PhD: Tokyo University of Science, Japan, 2005.

BS: Tokyo University of Science, Japan, 2000.

View PubMed Publications

Maezawa S, Yukawa M, Alavattam KG, Barski A, Namekawa SH. Dynamic reorganization of open chromatin underlies diverse transcriptomes during spermatogenesis. Nucleic Acids Res. 2017 Nov 6.

Maezawa S, Hasegawa K, Yukawa M, Sakashita A, Alavattam KG, Andreassen PR, Vidal M, Koseki H, Barski A, Namekawa SH. Polycomb directs timely activation of germline genes in spermatogenesis. Genes Dev. 2017 Aug 15;31(16):1693-1703. 

Alavattam KG, Kato Y, Sin HS, Maezawa S, Kowalski IJ, Zhang F, Pang Q, Andreassen PR, Namekawa SH. Elucidation of the Fanconi Anemia Protein Network in Meiosis and Its Function in the Regulation of Histone Modifications. Cell Rep. 2016 Oct 18;17(4):1141-1157. 

Sin HS, Kartashov AV, Hasegawa K,Barski A, Namekawa SH. Poised chromatin and bivalent domains facilitate the mitosis-to-meiosis transition in the male germline. BMC Biol. 2015 Jul 22;13:53.

Kato Y, Alavattam KG, Sin HS, Meetei A, Pang Q, Andreassen PR, Namekawa SH. FANCB is essential in the male germline and regulates H3K9 methylation on the sex chromosomes during meiosis. Hum Mol Genet. 2015 Jun 29. 

Hasegawa K, Sin HS, Maezawa S, Broering TJ, Kartashov AV, Alavattam KG, Ichijima Y, Zhang F, Bacon WC, Greis KD, Andreassen PR, Barski A, Namekawa SH. SCML2 establishes the male germline epigenome through regulation of histone H2A ubiquitination. Dev Cell. 2015 Mar 9;32(5):574-88.

Broering TJ*, Alavattam KG*, Sadreyev RI, Ichijima Y, Kato Y, Hasegawa K, Camerini-Otero RD, Lee JT, Andreassen PR, Namekawa SH. BRCA1 establishes DNA damage signaling and pericentric heterochromatin of the X chromosome in male meiosis. (*equal contribution) J Cell Biol. 2014 Jun 9;205(5):663-75.

Sin HS, Barski A, Zhang F, Kartashov AV, Nussenzweig A, Chen J, Andreassen PR, Namekawa SH. RNF8 regulates active epigenetic modifications and escape gene activation from inactive sex chromosomes in postmeiotic spermatids. Genes Dev. 2012 Dec 15:26(24)2737-2748.

Sin HS, Ichijima Y, Koh E, Namiki M, Namekawa SH. Human post meiotic sex chromatin and its impact on sex chromosome evolution. Genome Res. 2012 May;22(5):827-36.

Ichijima, Y, Ichijima M, Lou Z, Nussenzweig A, Camerini-Otero RD, Chen J, Andreassen PR, Namekawa SH. MDC1 directs chromosome-wide silencing of the sex chromosomes in male germ cells. Genes Dev. 2011 May 1;25(9):959-71.