My areas of interest for research include pulmonary magnetic resonance imaging (MRI), hyperpolarized gas, rare lung diseases and pulmonary complications following bone marrow transplantation. My background and graduate school training are in hyperpolarized noble gas chemistry and physics. I have a desire to perform research that tells clinicians and researchers more about early lung disease, how lung disease changes over time and with treatment and has direct clinical benefit to individual patients.
The overarching goal of my lab is to develop and validate novel MRI techniques for visualizing and quantifying regional lung structure-function relationships in pediatric and adult lung diseases. With the use of techniques such as proton ultra-short echo-time (UTE) and hyperpolarized xenon-129 (129Xe) gas MRI, the pathophysiological mechanisms of rare lung diseases can be described. Because MRI is free of ionizing radiation, biomarkers from MRI are used to assess treatment response, especially in rare diseases with limited patient numbers. These findings can inform more individualized clinical care for patients, which could result in improved outcomes.
My research team was the first to demonstrate hyperpolarized 129Xe gas as a safe, inhaled contrast agent for lung MRI and show that 129Xe MRI was sensitive to early cystic-fibrosis lung disease. We also found that 129Xe MRI is feasible for use in children unable to perform spirometry, the clinical gold-standard test for lung disease.
I am a member of the American Thoracic Society, Alpha Chi Sigma, a co-ed professional chemistry fraterny and on the planning committee of the Assembly on Respiratory Structure and Function of the American Thoracic Society. I received the Scientific Abstract Award from the American Thoracic Society Assembly on Pediatrics in 2015 and the Rising Star Award from the American Thoracic Society Assembly on Respiratory Structure and Function in 2020.
PhD: Southern Illinois University Carbondale, Carbondale, IL.
Postdoctoral Fellowship: Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.
Rare Lung Diseases
Pulmonary MRI; hyperpolarized gas; translational studies; rare-lung diseases
Pulmonary Medicine, Imaging, Fibrosis
A decay-modeled compressed sensing reconstruction approach for non-Cartesian hyperpolarized 129Xe MRI. Magnetic Resonance in Medicine. 2024; 92:1363-1375.
Childhood to adulthood: Accounting for age dependence in healthy-reference distributions in 129 Xe gas-exchange MRI. Magnetic Resonance in Medicine. 2023; 89:1117-1133.
Pediatric 129 Xe Gas-Transfer MRI-Feasibility and Applicability. Journal of Magnetic Resonance Imaging. 2022; 56:1207-1219.
Cyst Ventilation Heterogeneity and Alveolar Airspace Dilation as Early Disease Markers in Lymphangioleiomyomatosis. Annals of the American Thoracic Society. 2019; 16:1008-1016.
Xenon-129 MRI detects ventilation deficits in paediatric stem cell transplant patients unable to perform spirometry. The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology. 2019; 53:1801779.
Feasibility, tolerability and safety of pediatric hyperpolarized 129Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis. Pediatric Radiology: roentgenology, nuclear medicine, ultrasonics, CT, MRI. 2016; 46:1651-1662.
Analytical corrections for B1-inhomogeneity and signal decay in multi-slice 2D spiral hyperpolarized 129Xe MRI using keyhole reconstruction. Magnetic Resonance in Medicine. 2024; 92:967-981.
Quantifying abnormal alveolar microstructure in cystic fibrosis lung disease via hyperpolarized 129Xe diffusion MRI. Journal of Cystic Fibrosis. 2024; 23:926-935.
Detection of Bronchiolitis Obliterans Syndrome after Pediatric Hematopoietic Stem Cell Transplantation: An Official American Thoracic Society Clinical Practice Guideline. American Journal of Respiratory and Critical Care Medicine. 2024; 210:262-280.
129 Response in imaging and lung function outcomes in the HyPOINT study. Journal of Cystic Fibrosis. 2023; 22:s68-s69.