Publications

Gafranek, JT; D’Aniello, E; Ravisankar, P; Thakkar, K; Vagnozzi, RJ; Lim, HW; Salomonis, N; Waxman, JS. Sinus venosus adaptation models prolonged cardiovascular disease and reveals insights into evolutionary transitions of the vertebrate heart. Nature Communications. 2023; 14:5509.

Perl, E; Ravisankar, P; Beerens, ME; Mulahasanovic, L; Smallwood, K; Sasso, MB; Wenzel, C; Ryan, TD; Komár, M; Bove, KE; et al. Stx4 is required to regulate cardiomyocyte Ca2+ handling during vertebrate cardiac development. HGG Advances. 2022; 3:100115.

Paulissen, E; Palmisano, NJ; Waxman, JS; Martin, BL. Somite morphogenesis is required for axial blood vessel formation during zebrafish embryogenesis. eLife. 2022; 11:e74821.

Howard, AG A; Nguyen, AC; Tworig, J; Ravisankar, P; Singleton, EW; Li, C; Kotzur, G; Waxman, JS; Uribe, RA. Elevated Hoxb5b Expands Vagal Neural Crest Pool and Blocks Enteric Neuronal Development in Zebrafish. Frontiers in Cell and Developmental Biology. 2022; 9:803370.

Coppola, U; Waxman, JS. Origin and evolutionary landscape of Nr2f transcription factors across Metazoa. Editor, Schubert M. PloS one. 2021; 16:e0254282.

Duong, TB; Waxman, JS. Patterning of vertebrate cardiac progenitor fields by retinoic acid signaling. Genesis: the Journal of Genetics and Development. 2021; 59:e23458.

Duong, TB; Holowiecki, A; Waxman, JS. Retinoic acid signaling restricts the size of the first heart field within the anterior lateral plate mesoderm. Developmental Biology. 2021; 473:119-129.

Falkenberg, LG; Beckman, SA; Ravisankar, P; Dohn, TE; Waxman, JS. Ccdc103 promotes myeloid cell proliferation and migration independent of motile cilia. DMM Disease Models and Mechanisms. 2021; 14:dmm048439.

Falkenberg, LG; Beckman, SA; Ravisankar, P; Dohn, TE; Waxman, JS. Ccdc103 promotes myeloid cell proliferation and migration independent of motile cilia. DMM Disease Models and Mechanisms. 2021; 14:dmm048439.

Martin, KE; Waxman, JS. Atrial and Sinoatrial Node Development in the Zebrafish Heart. Journal of Cardiovascular Development and Disease. 2021; 8:15.

Holowiecki, A; Linstrum, K; Ravisankar, P; Chetal, K; Salomonis, N; Waxman, JS. Pbx4 limits heart size and fosters arch artery formation by partitioning second heart field progenitors and restricting proliferation. Development (Cambridge). 2020; 147:dev185652.

Perl, E; Waxman, JS. Retinoic Acid Signaling and Heart Development. Sub-Cellular Biochemistry. 2020; 95:119-149.

Perl, E; Waxman, JS. Reiterative Mechanisms of Retinoic Acid Signaling during Vertebrate Heart Development. Journal of Developmental Biology. 2019; 7:E11.

Song, YC; Dohn, TE; Rydeen, AB; Nechiporuk, AV; Waxman, JS. HDAC1-mediated repression of the retinoic acid-responsive gene ripply3 promotes second heart field development. Editor, Mullins MC. PLoS Genetics. 2019; 15:e1008165.

Skvarca, LB; Han, HI; Espiritu, EB; Missinato, MA; Rochon, ER; McDaniels, MD; Bais, AS; Roman, BL; Waxman, JS; Watkins, SC; et al. Enhancing regeneration after acute kidney injury by promoting cellular dedifferentiation in zebrafish. DMM Disease Models and Mechanisms. 2019; 12:dmm037390.

D'Aniello, E; Iannotti, FA; Falkenberg, LG; Martella, A; Gentile, A; De Maio, F; Ciavatta, ML; Gavagnin, M; Waxman, JS; Di Marzo, V; et al. In Silico Identification and Experimental Validation of (-)-Muqubilin A, a Marine Norterpene Peroxide, as PPARα/γ-RXRα Agonist and RARα Positive Allosteric Modulator. Marine Drugs. 2019; 17:E110.

Contact Us

Josh Waxman, PhD
Associate Professor
UC Department of Pediatrics

Mailing Address:
3333 Burnet Avenue
MLC 7020
Cincinnati, OH 45229

Location: T4.605
Phone: 513-636-7232
Fax: 513-636-5958
Email: joshua.waxman@cchmc.org