Our lab explores the integration of metabolic and signaling pathways that regulate stem / progenitor cell division, fate and differentiation, primarily in neural cells. We are particularly interested in AMP-activated protein kinase (AMPK), a molecule that represents a molecular hub of metabolic control in all eukaryotic cells and functions at the crossroads of several signaling pathways. AMPK is a complex enzyme composed of multiple subunits; different combinations of those subunits allow AMPK to perform unique functions including energy and redox homeostasis, regulation of mitosis, polarity, cell migration, survival and organismal development. We are only beginning to understand the context-dependent and subunit-specific functions of AMPK.

One of our laboratory’s current goals is to understand the cellular context-dependent formation of various AMPK complexes, and how these complexes subserve unique functions of AMPK. While we appreciate that AMPK activation during acute metabolic stress reprograms cellular metabolic circuits to allow cell survival, very little is known about the functions of physiologically active AMPK. An important focus of our laboratory is to examine the functions of physiologically active AMPK in normal neural cells, stem / progenitor cells and brain cancer cells. Our long-term goals include identification of novel AMPK substrates and specific small molecule modulators of AMPK activity that could potentially have therapeutic benefits in cancer, and metabolic and neurological disorders. Read more about our research.