A photo of John Brewington.

John J. Brewington, MD

  • Member, Division of Pulmonary Medicine
  • Assistant Professor, UC Department of Pediatrics



As a pediatric pulmonologist, I care for patients with a wide range of lung and airway disorders. I have a particular interest in using flexible bronchoscopy as a tool in the care of patients with cystic fibrosis (CF), congenital airway malformations and technology dependence.

My interest in medicine was sparked by working with children with chronic medical conditions. This population continues to be my primary focus. During my training as a pediatrician, I gravitated towards children with respiratory diseases, specifically cystic fibrosis and chronic respiratory failure, because of the complexity of these disorders and the long-term impact they have on these children.

Though I was interested in CF, I did not initially intend to pursue a research career. During my fellowship, the first cystic fibrosis transmembrane conductance regulator (CFTR) modulator, ivacaftor, was released but was only effective in less than 5 percent of the CF population. Having such an effective treatment limited to a small subset of my patients was frustrating. This frustration led me to the lab of J.P. Clancy, a CF expert at Cincinnati Children's. Through working with Dr. Clancy, I began my current research path with efforts to expand and optimize these therapies.

Mutations in the CFTR gene cause CF, and there are more than 2,000 such mutations described to date. Half of these are estimated to occur in five people in the world or less. Each mutation causes slightly different changes in the CFTR protein, which means various tools are needed to fix the protein cause of the disease. Some of these tools, called CFTR modulators, are available for people with certain CFTR gene mutations. My work seeks to identify people with rare CFTR gene mutations that would benefit from these therapies but otherwise do not have access due to their genotypes' rarity. We are also working to identify patient- and therapy-specific factors that may reduce the benefits these treatments offer and develop tools to optimize these lifelong medications.

My research goal is to provide personalized, precise care to patients with rare CF genetic variants. I specifically work with patient-derived models of respiratory epithelia to model different functions of the CF airway. Through this work, we seek to maximize the potential benefits of CFTR modulator drugs by expanding access and aiding in clinical therapeutic selection. We also seek to identify patient-specific factors that influence the severity of CF and the likelihood of a therapeutic response.

During residency, I received the Samuel Dalinsky Memorial Award (2012), a peer-selected award for a resident dedicated to academic excellence and the care of others. As a fellow and young faculty member, I received a Harry Shwachman clinical investigator award (2016-2019), a competitive grant from the CF Foundation aimed at developing young, promising researchers in the CF field.

In addition to my clinical and research efforts, I enjoy teaching learners across all aspects of medical education. I've been lucky to have many opportunities to teach, including work with our medical students and residents. I am also the coordinator of the international pediatric flexible bronchoscopy course held each year here in Cincinnati.


CRISPRi links COVID-19 GWAS loci to LZTFL1 and RAVER1. Fink-Baldauf, IM; Stuart, WD; Brewington, JJ; Guo, M; Maeda, Y. EBioMedicine. 2022; 75.

When CFSPID becomes CF. Ginsburg, D; Wee, CP; Reyes, MC; Brewington, JJ; Salinas, DB. Journal of Cystic Fibrosis. 2022; 21:e23-e27.

Rapid cystic fibrosis lung-function decline and in-vitro CFTR modulation. Gecili, E; Su, W; Brokamp, C; Andrinopoulou, ER; III, FJ L R; Pestian, T; Clancy, JP; Solomon, GM; Brewington, JJ; Szczesniak, RD. Journal of Cystic Fibrosis. 2021; 20:e69-e71.

Pediatric flexible airway endoscopy training during a pandemic and beyond: Bending the curve. Leong, A; Benscoter, D; Brewington, J; Torres-Silva, C; Wood, RE. Pediatric Pulmonology. 2021; 56:1386-1388.

Patient personalized translational tools in cystic fibrosis to transform data from bench to bed-side and back. Arora, K; Yang, F; Brewington, J; McPhail, G; Cortez, AR; Sundaram, N; Ramananda, Y; Ogden, H; Helmrath, M; Clancy, JP; et al. American Journal of Physiology - Gastrointestinal and Liver Physiology. 2021; 320:G1123-G1130.

Nasal Epithelial Cell-Based Models for Individualized Study in Cystic Fibrosis. Keegan, DE; Brewington, JJ. International Journal of Molecular Sciences. 2021; 22.

Flexible Bronchoscopic Thrombus Cryoextraction in a Neonate on Extracorporeal Membrane Oxygenation. Brewington, JJ; Benscoter, DT; Torres-Silva, CA; McHendry, CM; Lim, FY; Cortezzo, DM E; Hysinger, EB. American Journal of Respiratory and Critical Care Medicine. 2021; 203:633-635.

Neutrophil extracellular traps activate IL-8 and IL-1 expression in human bronchial epithelia. Hudock, KM; Collins, MS; Imbrogno, M; Snowball, J; Kramer, EL; Brewington, JJ; Gollomp, K; McCarthy, C; Ostmann, AJ; Kopras, EJ; et al. American Journal of Physiology - Lung Cellular and Molecular Physiology. 2020; 319:L137-L147.

CRISPRi-mediated functional analysis of lung disease-associated loci at non-coding regions. Stuart, WD; Guo, M; Fink-Baldauf, IM; Coleman, AM; Clancy, JP; Mall, MA; Lim, FY; Brewington, JJ; Maeda, Y. 2020; 2.

P203 Media impact on phenotype and function of an established airway epithelial cell line. Livnat-Levanon, G; Moncivaiz, J; Strecker, L; Ostmann, A; Clancy, J; Brewington, J. Journal of Cystic Fibrosis. 2020; 19:s113-s114.

Patient Ratings and Comments

All patient satisfaction ratings and comments are submitted by actual patients and verified by a leading independent patient satisfaction company, NRC Health. Patient identities are withheld to ensure confidentiality and privacy. Only those providers whose satisfaction surveys are administered through Cincinnati Children’s Hospital Medical Center are displayed. Click here to learn more about our survey