A photo of John Brewington.

Member, Division of Pulmonary Medicine

Assistant Professor, UC Department of Pediatrics

513-636-6771

Board Certified

My Biography & Research

Biography

As a pediatric pulmonologist, I care for patients with a wide range of lung and airway disorders. I have a particular interest in using flexible bronchoscopy as a tool in the care of patients with cystic fibrosis (CF), congenital airway malformations and technology dependence.

My interest in medicine was sparked by working with children with chronic medical conditions. This population continues to be my primary focus. During my training as a pediatrician, I gravitated towards children with respiratory diseases, specifically cystic fibrosis and chronic respiratory failure, because of the complexity of these disorders and the long-term impact they have on these children.

Though I was interested in CF, I did not initially intend to pursue a research career. During my fellowship, the first cystic fibrosis transmembrane conductance regulator (CFTR) modulator, ivacaftor, was released but was only effective in less than 5 percent of the CF population. Having such an effective treatment limited to a small subset of my patients was frustrating. This frustration led me to the lab of J.P. Clancy, a CF expert at Cincinnati Children's. Through working with Dr. Clancy, I began my current research path with efforts to expand and optimize these therapies.

Mutations in the CFTR gene cause CF, and there are more than 2,000 such mutations described to date. Half of these are estimated to occur in five people in the world or less. Each mutation causes slightly different changes in the CFTR protein, which means various tools are needed to fix the protein cause of the disease. Some of these tools, called CFTR modulators, are available for people with certain CFTR gene mutations. My work seeks to identify people with rare CFTR gene mutations that would benefit from these therapies but otherwise do not have access due to their genotypes' rarity. We are also working to identify patient- and therapy-specific factors that may reduce the benefits these treatments offer and develop tools to optimize these lifelong medications.

My research goal is to provide personalized, precise care to patients with rare CF genetic variants. I specifically work with patient-derived models of respiratory epithelia to model different functions of the CF airway. Through this work, we seek to maximize the potential benefits of CFTR modulator drugs by expanding access and aiding in clinical therapeutic selection. We also seek to identify patient-specific factors that influence the severity of CF and the likelihood of a therapeutic response.

During residency, I received the Samuel Dalinsky Memorial Award (2012), a peer-selected award for a resident dedicated to academic excellence and the care of others. As a fellow and young faculty member, I received a Harry Shwachman clinical investigator award (2016-2019), a competitive grant from the CF Foundation aimed at developing young, promising researchers in the CF field.

In addition to my clinical and research efforts, I enjoy teaching learners across all aspects of medical education. I've been lucky to have many opportunities to teach, including work with our medical students and residents. I am also the coordinator of the international pediatric flexible bronchoscopy course held each year here in Cincinnati.

Clinical Interests

Pulmonary medicine; bronchology; cystic fibrosis; congenital airway malformations

Research Interests

Cystic fibrosis; CFTR modulators; patient-derived model systems

Academic Affiliation

Assistant Professor, UC Department of Pediatrics

Clinical Divisions

Pulmonary Medicine, Bronchoscopy

Research Divisions

Pulmonary Medicine

My Education

MD: Wake Forest University, Winston-Salem, NC, 2009.

Residency: Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 2012.

Chief Residency: Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 2013.

Fellowship: Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 2016.

Certification: Pediatrics, 2012; Pediatric Pulmonary Medicine, 2016.

My Publications

CRISPRi-mediated functional analysis of lung disease-associated loci at non-coding regions. Stuart, WD; Guo, M; Fink-Baldauf, IM; Coleman, AM; Clancy, JP; Mall, MA; Lim, F; Brewington, JJ; Maeda, Y. 2020; 2.

Clinically approved CFTR modulators rescue Nrf2 dysfunction in cystic fibrosis airway epithelia. Borcherding, DC; Siefert, ME; Lin, S; Brewington, J; Sadek, H; Clancy, JP; Plafker, SM; Ziady, AG. Journal of Clinical Investigation. 2019; 129:3448-3463.

Direct Lung Sampling Indicates That Established Pathogens Dominate Early Infections in Children with Cystic Fibrosis. Jorth, P; Ehsan, Z; Rezayat, A; Caldwell, E; Pope, C; Brewington, JJ; Goss, CH; Benscoter, D; Clancy, JP; Singh, PK. Cell Reports. 2019; 27:1190-1204.e3.

Sweat Chloride Testing. McCarthy, C; Clancy, JP; Brewington, J. Journal of the American Medical Association. 2019; 321:701-702.

Brushed nasal epithelial cells are a surrogate for bronchial epithelial CFTR studies. Brewington, JJ; Filbrandt, ET; III, LF J; Moncivaiz, JD; Ostmann, AJ; Strecker, LM; Clancy, JP. JCI insight. 2018; 3.

Personalised CFTR pharmacotherapeutic response testing and therapy of cystic fibrosis. McCarthy, C; Brewington, JJ; Harkness, B; Clancy, JP; Trapnell, BC. The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology. 2018; 51:1702457-1702457.

Generation of Human Nasal Epithelial Cell Spheroids for Individualized Cystic Fibrosis Transmembrane Conductance Regulator Study. Brewington, JJ; Filbrandt, ET; III, LF J; Moncivaiz, JD; Ostmann, AJ; Strecker, LM; Clancy, JP. Jove-Journal of Visualized Experiments. 2018; 2018.

Chronic beta 2AR stimulation limits CFTR activation in human airway epithelia. Brewington, JJ; Backstrom, J; Feldman, A; Kramer, EL; Moncivaiz, JO; Ostmann, AJ; Zhu, X; Lu, LJ; Clancy, JP. JCI insight. 2018; 3.

Detection of CFTR function and modulation in primary human nasal cell spheroids. Brewington, JJ; Filbrandt, ET; III, LF J; Ostinann, AJ; Strecker, LM; Szczesniak, RD; Clancy, JP. Journal of Cystic Fibrosis. 2018; 17:26-33.

CFTR functional assays in drug development. Zak, SM; Clancy, JP; Brewington, JJ. Expert Opinion on Orphan Drugs. 2017; 5:889-898.