A photo of Chandrashekhar Pasare.

Chandrashekhar Pasare, DVM, PhD

  • Professor, UC Department of Pediatrics



In my research, I pursue topics such as regulation of inflammation, dendritic cell biology, innate immunity, toll-like receptor signaling and the cross-talk between the innate and adaptive immune systems. Our lab’s primary goals are to understand how the innate and adaptive immune system interact with each other and to define the molecules that are part of this interaction.

We are also studying how inflammation is prompted by microbial recognition and during autoimmunity. In general, our objectives are 1) to obtain a molecular understanding of inflammation to develop new treatments for reducing autoimmunity and inflammation and 2) to define the complex communication between innate and adaptive immune systems in order to improve the design of vaccines.

Some of the most notable discoveries my colleagues and I have made include:

  • Discovering a completely new pathway for inflammation in which auto-reactive T cells guide the innate immune system to produce IL-1beta; the new pathway may be used to treat auto-immunity
  • Finding a new Toll-Like Receptor signaling adapter known as BCAP that reduces inflammation

My lab concentrates on identifying the innate immune system's main activation mechanisms and its effect on inflammation and adaptive immunity. The innate immune system depends on certain receptors known as pattern recognition receptors to distinguish pathogens.

Pathogen recognition via the innate immune system causes inflammation as well as adaptive immunity activation. One of my lab's major objectives is to identify the elaborate interaction and signaling between the innate and adaptive immune systems. My colleagues and I are specifically pursuing how the innate immune system prompts inflammation and how it affects both protective immunity and inflammatory conditions.

My research interests began due to my fascination with learning how the body’s immune system knows not to react to self but recognizes and responds to the microbial non-self. Our research has defined multiple new proteins and pathways in cells within innate and adaptive immune systems. We have utilized them as handles to direct questions regarding protective immunity, cancer and inflammatory diseases. We employ cutting-edge in vitro and in vivo methods in our research that may bring new targets to treat auto-immunity, cancer and inflammatory conditions.

I have more than twenty years of experience in the field of immunology and first began working at the Cincinnati Children’s Hospital Medical Center in 2018. My research has been published in numerous journals, including Nature, Science, Immunity, The Journal of Experimental Medicine, Nature Immunology, Cell Reports, Journal of Immunology and Nature Communications.

PhD: National Institute of Immunology, New Delhi, India, 2000.

Post Doctoral Fellowship: Immunobiology, Yale University School of Medicine, New Haven, CT, 2006.


Innate immunity; toll-like receptor signaling; dendritic cell biology; innate control of adaptive immunity; regulation of inflammation

Research Areas

Immunobiology, Inflammation and Tolerance


Effector memory T cells induce innate inflammation by triggering DNA damage and a non-canonical STING pathway in dendritic cells. Meibers, HE; Warrick, KA; VonHandorf, A; Vallez, CN; Kawarizadeh, K; Saha, I; Donmez, O; Jain, VG; Kottyan, LC; Weirauch, MT; et al. Cell Reports. 2023; 42:113180.

IEC-intrinsic IL-1R signaling holds dual roles in regulating intestinal homeostasis and inflammation. Overcast, GR; Meibers, HE; Eshleman, EM; Saha, I; Waggoner, L; Patel, KN; Jain, VG; Haslam, DB; Alenghat, T; Vandussen, KL; et al. The Journal of Experimental Medicine. 2023; 220:e20212523.

Immune checkpoint blockade induces gut microbiota translocation that augments extraintestinal antitumor immunity. Choi, Y; Lichterman, JN; Coughlin, LA; Poulides, N; Li, W; Del Valle, P; Palmer, SN; Gan, S; Kim, J; Zhan, X; et al. Science Immunology. 2023; 8:eabo2003.

Farnesoid X receptor antagonizes macrophage-dependent licensing of effector T lymphocytes and progression of sclerosing cholangitis. Shi, T; Malik, A; vom Hofe, AY; Matuschek, L; Mullen, M; Lages, CS; Kudira, R; Singh, R; Zhang, W; Setchell, KD R; et al. Science Translational Medicine. 2022; 14:eabi4354.

The B cell adapter for PI3K (BCAP) promotes M2 macrophage phenotype and safeguards tumors from immune surveillance. Saha, I; Pasare, C. Journal of immunology (Baltimore, Md. : 1950). 2022; 208:61.08.

BCAP plays a central role in regulating canonical M2 macrophage polarization upon various cell extrinsic signals. Kawarizadeh, K; Warrick, K; Pasare, C. Journal of immunology (Baltimore, Md. : 1950). 2022; 208:111.04.

Effector memory CD4 T cells engage myeloid cells through TNFR and CD40 to induce innate inflammation and autoimmune pathology independent of pattern recognition receptors. Meibers, H; McDaniel, MM; Jain, A; Chawla, AS; Pasare, C. Journal of immunology (Baltimore, Md. : 1950). 2022; 208:164.19.

Effector memory CD4+ T cells induce damaging innate inflammation and autoimmune pathology by engaging CD40 and TNFR on myeloid cells. McDaniel, MM; Chawla, AS; Jain, A; Meibers, HE; Saha, I; Gao, Y; Jain, V; Roskin, K; Way, SS; Pasare, C. Science Immunology. 2022; 7:eabk0182.

Innate control of adaptive immunity and adaptive instruction of innate immunity: bi-directional flow of information. McDaniel, MM; Meibers, HE; Pasare, C. Current Opinion in Immunology. 2021; 73:25-33.

Environmental allergens trigger type 2 inflammation through ripoptosome activation. Brusilovsky, M; Rochman, M; Rochman, Y; Caldwell, JM; Mack, LE; Felton, JM; Habel, JE; Porollo, A; Pasare, C; Rothenberg, ME. Nature Immunology. 2021; 22:1316-1326.

From the Blog

Can Science Take the STING Out of Runaway Inflammation?
Autoimmune Disorders

Can Science Take the STING Out of Runaway Inflammation?

Chandrashekhar Pasare, DVM, PhD10/3/2023

New Leader for Immunobiology: Chandrashekhar Pasare, DVM, PhD
Infectious Diseases and Vaccines

New Leader for Immunobiology: Chandrashekhar Pasare, DVM, PhD

Chandrashekhar Pasare, DVM, PhD9/7/2023

Study to Decode Microbe-Gut Signaling Suggests Potential New Treatment For IBD
Digestive System

Study to Decode Microbe-Gut Signaling Suggests Potential New Treatment For IBD

Chandrashekhar Pasare, DVM, PhD4/3/2023

Targeting RipIL-33 Pathway Could Transform Allergy Treatment
Asthma and Allergy

Targeting RipIL-33 Pathway Could Transform Allergy Treatment

Chandrashekhar Pasare, DVM, PhD, Marc E. Rothenberg, MD, PhD2/8/2023