In my research, I pursue topics such as regulation of inflammation, dendritic cell biology, innate immunity, toll-like receptor signaling and the cross-talk between the innate and adaptive immune systems. Our lab’s primary goals are to understand how the innate and adaptive immune system interact with each other and to define the molecules that are part of this interaction.
We are also studying how inflammation is prompted by microbial recognition and during autoimmunity. In general, our objectives are 1) to obtain a molecular understanding of inflammation to develop new treatments for reducing autoimmunity and inflammation and 2) to define the complex communication between innate and adaptive immune systems in order to improve the design of vaccines.
Some of the most notable discoveries my colleagues and I have made include:
My lab concentrates on identifying the innate immune system's main activation mechanisms and its effect on inflammation and adaptive immunity. The innate immune system depends on certain receptors known as pattern recognition receptors to distinguish pathogens.
Pathogen recognition via the innate immune system causes inflammation as well as adaptive immunity activation. One of my lab's major objectives is to identify the elaborate interaction and signaling between the innate and adaptive immune systems. My colleagues and I are specifically pursuing how the innate immune system prompts inflammation and how it affects both protective immunity and inflammatory conditions.
My research interests began due to my fascination with learning how the body’s immune system knows not to react to self but recognizes and responds to the microbial non-self. Our research has defined multiple new proteins and pathways in cells within innate and adaptive immune systems. We have utilized them as handles to direct questions regarding protective immunity, cancer and inflammatory diseases. We employ cutting-edge in vitro and in vivo methods in our research that may bring new targets to treat auto-immunity, cancer and inflammatory conditions.
I have more than twenty years of experience in the field of immunology and first began working at the Cincinnati Children’s Hospital Medical Center in 2018. My research has been published in numerous journals, including Nature, Science, Immunity, The Journal of Experimental Medicine, Nature Immunology, Cell Reports, Journal of Immunology and Nature Communications.
PhD: National Institute of Immunology, New Delhi, India, 2000.
Post Doctoral Fellowship: Immunobiology, Yale University School of Medicine, New Haven, CT, 2006.
Innate immunity; toll-like receptor signaling; dendritic cell biology; innate control of adaptive immunity; regulation of inflammation
Immunobiology, Inflammation and Tolerance
Alloreactive memory CD4 T cells promote transplant rejection by engaging DCs to induce innate inflammation and CD8 T cell priming. Proceedings of the National Academy of Sciences of USA. 2024; 121:e2401658121.
Control of adaptive immunity by pattern recognition receptors. Immunity. 2024; 57:632-648.
Effector memory T cells induce innate inflammation by triggering DNA damage and a non-canonical STING pathway in dendritic cells. Cell Reports. 2023; 42:113180.
70 C5a receptor 1 controls antigen and TLR-driven T cell proliferation and differentiation by splenic conventional type 2 dendritic cells. Immunobiology. 2023; 228:152521.
IEC-intrinsic IL-1R signaling holds dual roles in regulating intestinal homeostasis and inflammation. The Journal of Experimental Medicine. 2023; 220:e20212523.
Immune checkpoint blockade induces gut microbiota translocation that augments extraintestinal antitumor immunity. Science Immunology. 2023; 8:eabo2003.
Farnesoid X receptor antagonizes macrophage-dependent licensing of effector T lymphocytes and progression of sclerosing cholangitis. Science Translational Medicine. 2022; 14:eabi4354.
The B cell adapter for PI3K (BCAP) promotes M2 macrophage phenotype and safeguards tumors from immune surveillance. Journal of immunology (Baltimore, Md. : 1950). 2022; 208:61.08.
BCAP plays a central role in regulating canonical M2 macrophage polarization upon various cell extrinsic signals. Journal of immunology (Baltimore, Md. : 1950). 2022; 208:111.04.
Effector memory CD4 T cells engage myeloid cells through TNFR and CD40 to induce innate inflammation and autoimmune pathology independent of pattern recognition receptors. Journal of immunology (Baltimore, Md. : 1950). 2022; 208:164.19.
Chandrashekhar Pasare, DVM, PhD8/12/2024
Chandrashekhar Pasare, DVM, PhD10/3/2023
Chandrashekhar Pasare, DVM, PhD9/7/2023
Chandrashekhar Pasare, DVM, PhD4/3/2023
Chandrashekhar Pasare, DVM, PhD, Marc E. Rothenberg, MD, PhD2/8/2023
Chandrashekhar Pasare, DVM, PhD1/21/2022